Elastic waves propagating in graphene nanoribbons were studied using both continuum modeling and molecular dynamics simulations. The Mindlin's plate model was employed to model the propagation of interior waves of graphene, and a continuum beam model was proposed to model the propagation of edge waves in graphene. The molecular dynamics results demonstrated that the interior longitudinal and transverse wave speeds of graphene are about 18,450 m/s and 5640 m/s, respectively, in good agreement with the Mindlin's plate model. The molecular dynamics simulations also revealed the existence of elastic edge waves, which may be described by the proposed continuum beam model.
Issue Section:
Research Papers
References
1.
Rayleigh
, J. W. S.
, 1945
, The Theory of Sound, Vol. 1 & 2
, 2nd ed., Dover
, New York
.2.
Graff
, K. F.
, 1975
, Wave Motion in Elastic Solids
, Dover
, New York
.3.
Wang
, Q.
, 2005
, “Wave Propagation in Carbon Nanotubes Via Nonlocal Continuum Mechanics
,” J. Appl. Phys.
, 98
, p. 124301
.10.1063/1.21416484.
Wang
, L.
, and Hu
, H.
, 2005
, “Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,” Phys. Rev. B
, 71
, p. 195412
.10.1103/PhysRevB.71.1954125.
Liu
, P.
, Gao
, H. J.
, and Zhang
, Y. W.
, 2008
, “Spontaneous Generation and Propagation of Transverse Coaxial Traveling Waves in Multiwalled Carbon Nanotubes
,” Appl. Phys. Lett.
, 93
, p. 013106
.10.1063/1.29564206.
Hu
, Y. G.
, Liew
, K. M.
, Wang
, Q.
, He
, X. Q.
, and Yakobson
, B. I.
, 2008
, “Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes
,” J. Mech. Phys. Solids
, 56
, pp. 3475
–3485
.10.1016/j.jmps.2008.08.0107.
Arroyo
, M.
, and Belytschko
, T.
, 2004
, “Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule
,” Phys. Rev. B
, 69
(11
), p. 115415
.10.1103/PhysRevB.69.1154158.
Novoselov
, K. S.
, Geim
, A. K.
, Morozov
, S. V.
, Jiang
, D.
, Zhang
, Y.
, Dubonos
, S.
V.
, Grigorieva
, I. V.
, and Firsov
, A. A.
, 2004
, “Electric Field Effect in Atomically Thin Carbon Films
,” Science
, 306
(5696
), pp. 666
–669
.10.1126/science.11028969.
Geim
, A. K.
, and Novoselov
, K. S.
, 2007
, “The Rise of Graphene
,” Nature Mater.
, 6
(3
), pp. 183
–191
.10.1038/nmat184910.
Thalmeier
, P.
, Dora
, B.
, and Ziegler
, K.
, 2010
, “Surface Acoustic Wave Propagation in Graphene
,” Phys. Rev. B
, 81
, p. 041409
.10.1103/PhysRevB.81.04140911.
Liu
, P.
, and Zhang
, Y. W.
, 2009
, “Temperature-Dependent Bending Rigidity of Graphene
,” Appl. Phys. Lett.
, 94
, p. 231912
.10.1063/1.315519712.
Kim
, S. Y.
, and Park
, H. S.
, 2011
, “On the Effective Plate Thickness of Monolayer Graphene From Flexural Wave Propagation
,” J. Appl. Phys.
, 110
(5
), p. 054324
.10.1063/1.363323013.
Cai
, J. M.
, Ruffieux
, P.
, Jaafar
, R.
, Bieri
, M.
, Braun
, T.
, Blankenburg
, S.
, Muoth
, M.
, Seitsonen
, A. P.
, Saleh
, M.
, Feng
, X. L.
, Mullen
, K.
, and Fasel
, R.
, 2010
, “Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons
,” Nature
, 466
(7305
), pp. 470
–473
.10.1038/nature0921114.
Shenoy
, V. B.
, Reddy
, C. D.
, Ramasubramaniam
, A.
, and Zhang
, Y. W.
, 2008
, “Edge-Stress-Induced Warping of Graphene Sheets and Nanoribbons
,” Phys. Rev. Lett.
, 101
(24
), p. 245501
.10.1103/PhysRevLett.101.24550115.
Son
, Y. W.
, Cohen
, M. L.
, and Louie
, S. G.
, 2006
, “Half-Metallic Graphene Nanoribbons
,” Nature
, 444
(7117
), pp. 347
–349
.10.1038/nature0518016.
Ritter
, K. A.
, and Lyding
, J. W.
, 2009
, “The Influence of Edge Structure on the Electronic Properties of Graphene Quantum Dots and Nanoribbons
,” Nature Mater.
, 8
(3
), pp. 235
–242
.10.1038/nmat237817.
Scarpa
, F.
, Chowdhury
, R.
, Kam
, K.
, Adhikari
, S.
, and Ruzzene
, M.
, 2011
, “Dynamics of Mechanical Waves in Periodic Grapheme Nanoribbon Assemblies
,” Nanoscale Res. Lett.
, 6
, p. 430
.10.1186/1556-276X-6-43018.
Shenoy
, V. B.
, Reddy
, C. D.
, and Zhang
, Y. W.
, 2010
, “Spontaneous Curving of Graphene Sheets With Reconstructed Edges
,” ACS Nano
, 4
(8
), pp. 4840
–4844
.10.1021/nn100842k19.
Reddy
, C. D.
, Ramasubramaniam
, A.
, Shenoy
, V. B.
, and Zhang
, Y. W.
, 2009
, “Edge Elastic Properties of Defect-Free Single-Layer Graphene Sheets
,” Appl. Phys. Lett.
, 94
(10
), p. 101904
.10.1063/1.309487820.
Konenkov
, Y. K.
, 1960
, “A Rayleigh-Type Flexural Wave
,” Sov. Phys. Acoust.
, 6
, pp. 122
–123
.21.
Kauffmann
, C.
, 1998
, “A New Bending Wave Solution for the Classical Plate Equation
,” J. Acoust. Soc. Am.
, 104
(4
), pp. 2220
–2222
.10.1121/1.42373522.
Mindlin
, R. D.
, 1951
, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,” ASME J. Appl. Mech.
, 18
(1
), pp. 31
–38
.23.
Yakobson
, B. I.
, Brabec
, C. J.
, and Bernholc
, J.
, 1996
, “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,” Phys. Rev. Lett.
, 76
(14
), pp. 2511
–2514
.10.1103/PhysRevLett.76.251124.
Timoshenko
, S. P.
, 1921
, “On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,” Philos. Mag.
, 41
(245
), pp. 744
–746
.10.1080/1478644210863626425.
Brenner
, D. W.
, Shenderova
, O. A.
, Harrison
, J. A.
, Stuart
, S. J.
, Ni
, B.
, and Sinnott
, S. B.
, 2002
, “A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,” J. Phys. Condens. Matter
, 14
(4
), pp. 783
–80
2.10.1088/0953-8984/14/4/312Copyright © 2013 by ASME
You do not currently have access to this content.