Wrinkles in graphene with desirable morphology have practical significance for electronic applications. Here we carry out a systematic molecular dynamics study of the wrinkling instability of graphene on substrate-supported nanoparticles (NPs). At a large NP dispersion distance, a monolayer graphene adheres to the substrate and bulges out locally to wrap around individual NPs, forming isolated dome-shaped protrusions. At a small NP dispersion distance, tunneling wrinkles form in graphene to bridge the NP-induced protrusions. A critical NP dispersion distance for the onset of tunneling wrinkle instability of graphene is determined as a function of the NP size. The prediction from the modeling study agrees well with recent experimental observations. Results from the present study offer further insights into the formation of desirable wrinkles in graphene deposited on a substrate with engineered protrusions and, thus, can potentially enable novel design of graphene-based electronics.

References

1.
Geim
,
A.
, and
Novoselov
,
K.
,
2007
, “
The Rise of Graphene
,”
Nature Mater.
,
6
(
3
), pp.
183
191
.10.1038/nmat1849
2.
Klimov
,
N. N.
,
Jung
,
S.
,
Zhu
,
S.
,
Li
,
T.
,
Wright
,
C. A.
,
Solares
,
S. D.
,
Newell
,
D. B.
,
Zhitenev
,
N. B.
, and
Stroscio
,
J. A.
,
2012
, “
Electromechanical Properties of Graphene Drumheads
,”
Science
,
336
(
6088
), pp.
1557
1561
.10.1126/science.1220335
3.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
4.
Fasolino
,
A.
,
Los
,
J.
, and
Katsnelson
,
M.
,
2007
, “
Intrinsic Ripples in Graphene
,”
Nature Mater.
,
6
(
11
), pp.
858
861
.10.1038/nmat2011
5.
Zhu
,
S.
,
Galginaitis
,
J.
, and
Li
,
T.
,
2012
, “
Critical Dispersion Distance of Silicon Nanoparticles Intercalated Between Graphene Layers
,”
J. Nanomater.
,
2012
, p.
375289
.10.1155/2012/375289
6.
Li
,
T.
,
2011
, “
Extrinsic Morphology of Graphene
,”
Modelling Simul. Mater. Sci. Eng.
,
19
(
5
), p.
054005
.10.1088/0965-0393/19/5/054005
7.
Kim
,
K.
,
Lee
,
Z.
,
Malone
,
B.
,
Chan
,
K.
,
Aleman
,
B.
,
Regan
,
W.
,
Gannett
,
W.
,
Crommie
,
M.
,
Cohen
,
M.
, and
Zettl
,
A.
,
2011
, “
Multiply Folded Graphene
,”
Phys. Rev. B
,
83
(
24
), p.
245433
.10.1103/PhysRevB.83.245433
8.
Patra
,
N.
,
Wang
,
B.
, and
Kral
,
P.
,
2009
, “
Nanodroplet Activated and Guided Folding of Graphene Nanostructures
,”
Nano Lett.
,
9
(
11
), pp.
3766
3771
.10.1021/nl9019616
9.
Zhang
,
Z.
,
Liu
,
B.
,
Hwang
,
K.
, and
Gao
,
H.
,
2011
, “
Surface-Adsorption-Induced Bending Behaviors of Graphene Nanoribbons
,”
Appl. Phys. Lett.
,
98
(
12
), p.
121909
.10.1063/1.3569589
10.
Xu
,
R.
,
Wang
,
Y.
,
Liu
,
B.
, and
Fang
,
D.
,
2013
, “
Mechanics Interpretation on the Bending Stiffness and Wrinkled Pattern of Graphene
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040910
.10.1115/1.4024178
11.
Boddeti
,
N.
,
Koenig
,
S.
,
Long
,
R.
,
Xiao
,
J.
,
Bunch
,
J.
, and
Dunn
,
M.
,
2013
, “
Mechanics of Adhered, Pressurized Graphene Blisters
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040909
.10.1115/1.4024255
12.
Zhang
,
Z.
, and
Li
,
T.
,
2010
, “
Carbon Nanotube Initiated Formation of Carbon Nanoscrolls
,”
Appl. Phys. Lett.
,
97
(
8
), p.
081909
.10.1063/1.3479050
13.
Zhu
,
S.
, and
Li
,
T.
,
2013
, “
Hydrogenation Enabled Scrolling of Graphene
,”
J. Phys. D Appl. Phys.
,
46
(
7
), p.
075301
.10.1088/0022-3727/46/7/075301
14.
Yu
,
D.
, and
Liu
,
F.
,
2007
, “
Synthesis of Carbon Nanotubes by Rolling Up Patterned Graphene Nanoribbons Using Selective Atomic Adsorption
,”
Nano Lett.
,
7
(
10
), pp.
3046
3050
.10.1021/nl071511n
15.
Zhang
,
Z.
, and
Li
,
T.
,
2011
, “
Ultrafast Nano-Oscillators Based on Interlayer-Bridged Carbon Nanoscrolls
,”
Nanoscale Res. Lett.
,
6
, p.
470
.10.1186/1556-276X-6-470
16.
Shi
,
X.
,
Pugno
,
N.
, and
Gao
,
H.
,
2010
, “
Tunable Core Size of Carbon Nanoscrolls
,”
J. Comp. Theor. Nanosci.
,
7
(
3
), pp.
517
521
.10.1166/jctn.2010.1387
17.
Xie
,
X.
,
Ju
,
L.
,
Feng
,
X.
,
Sun
,
Y.
,
Zhou
,
R.
,
Liu
,
K.
,
Fan
,
S.
,
Li
,
Q.
, and
Jiang
,
K.
,
2009
, “
Controlled Fabrication of High-Quality Carbon Nanoscrolls From Monolayer Graphene
,”
Nano Lett.
,
9
(
7
), pp.
2565
2570
.10.1021/nl900677y
18.
Braga
,
S.
,
Coluci
,
V.
,
Legoas
,
S.
,
Giro
,
R.
,
Galvao
,
D.
, and
Baughman
,
R.
,
2004
, “
Structure and Dynamics of Carbon Nanoscrolls
,”
Nano Lett.
,
4
(
5
), pp.
881
884
.10.1021/nl0497272
19.
Martins
,
B.
, and
Galvao
,
D.
,
2010
, “
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
,”
Nanotechnology
,
21
(
7
), p.
075710
.10.1088/0957-4484/21/7/075710
20.
Hicks
,
J.
,
Tejeda
,
A.
,
Taleb-Ibrahimi
,
A.
,
Nevius
,
M.
,
Wang
,
F.
,
Shepperd
,
K.
,
Palmer
,
J.
,
Bertran
,
F.
,
Le Fevre
,
P.
,
Kunc
,
J.
,
de Heer
,
W.
,
Berger
,
C.
, and
Conrad
,
E.
,
2013
, “
A Wide-Bandgap Metal-Semiconductor-Metal Nanostructure Made Entirely From Graphene
,”
Nature Phys.
,
9
(
1
), pp.
49
54
.10.1038/nphys2487
21.
Guo
,
Y.
, and
Guo
,
W.
,
2013
, “
Electronic and Field Emission Properties of Wrinkled Graphene
,”
J. Phys. Chem. C
,
117
(
1
), pp.
692
696
.10.1021/jp3103063
22.
Yan
,
H.
,
Sun
,
Y.
,
He
,
L.
,
Nie
,
J.
, and
Chan
,
M.
,
2012
, “
Observation of Landau-Level-Like Quantization at 77 K Along a Strained-Induced Graphene Ridge
,”
Phys. Rev. B
,
85
(
3
), p.
035422
.10.1103/PhysRevB.85.035422
23.
Yamamoto
,
M.
,
Pierre-Louis
,
O.
,
Huang
,
J.
,
Fuhrer
,
M.
,
Einstein
,
T.
, and
Cullen
,
W.
,
2012
, “‘The Princess and the Pea'
at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles
,”
Phys. Rev. X
,
2
(
4
), p.
041018
.10.1103/PhysRevX.2.041018
24.
Castro Neto
,
A.
,
Guinea
,
F.
,
Peres
,
N.
,
Novoselov
,
K.
, and
Geim
,
A.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
(
1
), pp.
109
-
162
.10.1103/RevModPhys.81.109
25.
Zhang
,
Z.
, and
Li
,
T.
,
2010
, “
Graphene Morphology Regulated by Nanowires Patterned in Parallel on a Substrate Surface
,”
J. Appl. Phys.
,
107
(
10
), p.
103519
.10.1063/1.3427551
26.
Zhang
,
Z.
, and
Li
,
T.
,
2011
, “
A Molecular Mechanics Study of Morphologic Interaction Between Graphene and Si Nanowires on a SiO2 Substrate
,”
J. Nanomater.
,
2011
, p.
374018
.10.1155/2011/374018
27.
Li
,
T.
, and
Zhang
,
Z.
,
2010
, “
Snap-Through Instability of Graphene on Substrates
,”
Nanoscale Res. Lett.
,
5
(
1
), pp.
169
173
.10.1007/s11671-009-9460-1
28.
Li
,
T.
, and
Zhang
,
Z.
,
2010
, “
Substrate-Regulated Morphology of Graphene
,”
J. Phys. D Appl. Phys.
,
43
(
7
), p.
075303
.10.1088/0022-3727/43/7/075303
29.
Aitken
,
Z.
, and
Huang
,
R.
,
2010
, “
Effects of Mismatch Strain and Substrate Surface Corrugation on Morphology of Supported Monolayer Graphene
,”
J. Appl. Phys.
,
107
(
12
), p.
123531
.10.1063/1.3437642
30.
Scharfenberg
,
S.
,
Rocklin
,
D.
,
Chialvo
,
C.
,
Weaver
,
R.
,
Goldbart
,
P.
, and
Mason
,
N.
,
2011
, “
Probing the Mechanical Properties of Graphene Using a Corrugated Elastic Substrate
,”
Appl. Phys. Lett.
,
98
(
9
), p.
091908
.10.1063/1.3553228
31.
Jiang
,
L.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K.
, and
Liu
,
B.
,
2006
, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2436
2452
.10.1016/j.jmps.2006.04.009
32.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
Journal of Computational Physics
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
33.
Stuart
,
S.
,
Tutein
,
A.
, and
Harrison
,
J.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
34.
Koenig
,
S.
,
Boddeti
,
N.
,
Dunn
,
M.
, and
Bunch
,
J.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nature Nanotech.
,
6
(
9
), pp.
543
546
.10.1038/nnano.2011.123
35.
Zong
,
Z.
,
Chen
,
C.
,
Dokmeci
,
M.
, and
Wan
,
K.
,
2010
, “
Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles
,”
J. Appl. Phys.
,
107
(
2
), p.
026104
.10.1063/1.3294960
36.
Tomori
,
H.
,
Kanda
,
A.
,
Goto
,
H.
,
Ootuka
,
Y.
,
Tsukagoshi
,
K.
,
Moriyama
,
S.
,
Watanabe
,
E.
, and
Tsuya
,
D.
,
2011
, “
Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars
,”
Appl. Phys. Express
,
4
(
7
), p.
075102
.10.1143/APEX.4.075102
37.
Li
,
G.
,
Yilmaz
,
C.
,
An
,
X.
,
Somu
,
S.
,
Kar
,
S.
,
Jung
,
Y.
,
Busnaina
,
A.
, and
Wan
,
K.
,
2013
, “
Adhesion of Graphene Sheet on Nano-Patterned Substrates With Nano-Pillar Array
,”
J. Appl. Phys.
,
113
(
24
), p.
244303
.10.1063/1.4811718
38.
Neek-Amal
,
M.
,
Covaci
,
L.
, and
Peeters
,
F.
,
2012
, “
Nanoengineered Nonuniform Strain in Graphene Using Nanopillars
,”
Phys. Rev. B
,
86
(
4
), p.
041405
.10.1103/PhysRevB.86.041405
You do not currently have access to this content.