Two closed-form solutions for an internally pressurized thick-walled cylinder of an elastic linear-hardening material and of an elastic power-law hardening material are first obtained using a strain gradient plasticity theory, a unified yield criterion, and Hencky's deformation theory. The strain gradient plasticity theory contains a microstructure-dependent length-scale parameter and can capture size effects observed at the micron scale. The unified yield criterion includes the intermediate principal stress and recovers the Tresca, von Mises, and twin shear yield criteria as special cases. An autofrettage analysis is then performed by using the two new solutions, which leads to the analytical determination of the elastic and plastic limiting pressures, the residual stress field, and the stress field induced by an operating pressure for each strain-hardening cylinder. This is followed by a shakedown analysis of the autofrettaged thick-walled cylinders, which results in analytical formulas for reverse yielding and elastic reloading shakedown limits. The newly obtained solutions and formulas include their classical plasticity-based counterparts as limiting cases. To quantitatively illustrate the new formulas derived, a parametric study is conducted. The numerical results reveal that the shakedown limit (as the upper bound of the autofrettage pressure) increases with the diameter ratio and with the strain hardening level. It is also found that the Tresca yield criterion gives the lowest value and the twin shear yield criterion leads to the highest value, while the von Mises yield criterion results in the intermediate value of the shakedown limit. In addition, it is observed that the shakedown limit based on the current strain gradient plasticity solutions increases with the decrease of the inner radius when the cylinder inner radius is sufficiently small, but it approaches that (a constant value independent of the inner radius) based on the classical plasticity solution when the inner radius becomes large. This predicted size (strengthening) effect at the micron scale agrees with the general trends observed experimentally.

References

1.
Bland
,
D. R.
,
1956
, “
Elastoplastic Thick-Walled Tubes of Work-Hardening Materials Subject to Internal and External Pressures and to Temperature Gradients
,”
J. Mech. Phys. Solids
,
4
(
4
), pp.
209
229
.10.1016/0022-5096(56)90030-8
2.
Durban
,
D.
,
1979
, “
Large Strain Solution for Pressurized Elasto/Plastic Tubes
,”
ASME J. Appl. Mech.
,
46
(
1
), pp.
228
230
.10.1115/1.3424511
3.
Durban
,
D.
, and
Kubi
,
M.
,
1992
, “
A General Solution for the Pressurized Elastoplastic Tube
,”
ASME J. Appl. Mech.
,
59
(
1
), pp.
20
26
.10.1115/1.2899431
4.
Gao
,
X.-L.
,
1992
, “
An Exact Elasto-Plastic Solution for an Open-Ended Thick-Walled Cylinder of a Strain-Hardening Material
,”
Int. J. Pressure Vessels Piping
,
52
(
1
), pp.
129
144
.10.1016/0308-0161(92)90064-M
5.
Gao
,
X.-L.
,
1993
, “
An Exact Elasto-Plastic Solution for a Closed-End Thick-Walled Cylinder of Elastic Linear-Hardening Material With Large Strains
,”
Int. J. Pressure Vessels Piping
,
56
(
3
), pp.
331
350
.10.1016/0308-0161(93)90004-D
6.
Perry
,
J.
, and
Aboudi
,
J.
,
2003
, “
Elasto-Plastic Stresses in Thick Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
248
252
.10.1115/1.1593078
7.
Zhao
,
W.
,
Seshadri
,
R.
, and
Dubey
,
R. N.
,
2003
, “
On Thick-Walled Cylinder Under Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
267
273
.10.1115/1.1593082
8.
Davidson
,
T. E.
,
Kendall
,
D. P.
, and
Reiner
,
A. N.
,
1963
, “
Residual Stresses in Thick-Walled Cylinders Resulting From Mechanically Induced Overstrain
,”
Exp. Mech.
,
3
(
11
), pp.
253
262
.10.1007/BF02325841
9.
Chen
,
P. C. T.
,
1986
, “
The Bauschinger and Hardening Effect on Residual Stresses in an Autofrettaged Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
108
(
1
), pp.
108
112
.10.1115/1.3264743
10.
Liu
,
X. S.
, and
Xu
,
B. Y.
,
1990
, “
On the Shakedown Analysis of Thick-Walled Cylindrical Tube
,”
Shanghai Mech.
,
11
(
4
), pp.
1
9
.
11.
Jiang
,
W.
,
1992
, “
The Elastic-Plastic Analysis of Tubes—III: Shakedown Analysis
,”
ASME J. Pressure Vessel Technol.
,
114
(
2
), pp.
229
235
.10.1115/1.2929034
12.
Avitzur
,
B.
,
1994
, “
Autofrettage–Stress Distribution Under Load and Retained Stresses After Depressurization
,”
Int. J. Pressure Vessels Piping
,
57
(
3
), pp.
271
287
.10.1016/0308-0161(94)90031-0
13.
Lazzarin
,
P.
, and
Livieri
,
P.
,
1997
, “
Different Solutions for Stress and Strain Fields in Autofrettaged Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
231
238
.10.1016/S0308-0161(97)00002-1
14.
Xu
,
S.-Q.
, and
Yu
,
M.-H.
,
2005
, “
Shakedown Analysis of Thick-Walled Cylinders Subjected to Internal Pressure With the Unified Strength Criterion
,”
Int. J. Pressure Vessels Piping
,
82
(
9
), pp.
706
712
.10.1016/j.ijpvp.2005.03.003
15.
Huang
,
X. P.
,
2005
, “
A General Autofrettage Model of a Thick-Walled Cylinder Based on Tensile-Compressive Stress-Strain Curve of a Material
,”
J. Strain Anal. Eng. Des.
,
40
(
6
), pp.
599
607
.10.1243/030932405X16070
16.
Yu
,
M.-H.
,
Ma
,
G.-W.
,
Qiang
,
H.-F.
, and
Zhang
,
Y.-Q.
,
2006
,
Generalized Plasticity
,
Springer
,
Berlin
.
17.
Korsunsky
,
A. M.
,
2007
, “
Residual Elastic Strains in Autofrettaged Tubes: Elastic–Ideally Plastic Model Analysis
,”
ASME J. Eng. Mater. Technol.
,
129
(
1
), pp.
77
81
.10.1115/1.2400267
18.
Hojjati
,
M. H.
, and
Hassani
,
A.
,
2007
, “
Theoretical and Finite-Element Modeling of Autofrettage Process in Strain-Hardening Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
84
(
5
), pp.
310
319
.10.1016/j.ijpvp.2006.10.004
19.
Zheng
,
X.-T.
, and
Xuan
,
F.-Z.
,
2010
, “
Investigation on Autofrettage and Safety of the Thick-Walled Cylinder Under Thermo-Mechanical Loadings
,”
Chin. J. Mech. Eng.
,
46
(
16
), pp.
156
161
.10.3901/JME.2010.16.156
20.
Zheng
,
X.-T.
, and
Xuan
,
F.-Z.
,
2011
, “
Autofrettage and Shakedown Analysis of Strain-Hardening Cylinders Under Thermo-Mechanical Loadings
,”
J. Strain Anal. Eng. Des.
,
46
(
1
), pp.
45
55
.10.1243/03093247JSA682
21.
Maugin
,
G. A.
,
2011
, “
A Historical Perspective of Generalized Continuum Mechanics
,”
Mechanics of Generalized Continua
,
H.
Altenbach
,
G. A.
Maugin
, and
V.
Erofeev
, eds.,
Springer
,
Berlin
, pp.
3
19
.
22.
Gao
,
X.-L.
,
2003
, “
Elasto-Plastic Analysis of an Internally Pressurized Thick-Walled Cylinder Using a Strain Gradient Plasticity Theory
,”
Int. J. Solids Struct.
,
40
(
23
), pp.
6445
6455
.10.1016/S0020-7683(03)00424-4
23.
Gao
,
X.-L.
,
2007
, “
Strain Gradient Plasticity Solution for an Internally Pressurized Thick-Walled Cylinder of an Elastic Linear-Hardening Material
,”
Z. Angew. Math. Phys.
,
58
(
1
), pp.
161
173
.10.1007/s00033-006-0083-4
24.
Hutchinson
,
J. W.
,
2000
, “
Plasticity at the Micron Scale
,”
Int. J. Solids Struct.
,
37
(
1–2
), pp.
225
238
.10.1016/S0020-7683(99)00090-6
25.
Mühlhaus
,
H.-B.
, and
Aifantis
,
E. C.
,
1991
, “
A Variational Principle for Gradient Plasticity
,”
Int. J. Solids Struct.
,
28
(
7
), pp.
845
857
.10.1016/0020-7683(91)90004-Y
26.
Fan
,
S. C.
,
Yu
,
M.-H.
, and
Yang
,
S. Y.
,
2001
, “
On the Unification of Yield Criteria
,”
ASME J. Appl. Mech.
,
68
(
2
), pp.
341
343
.10.1115/1.1320451
27.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.10.1016/0022-5096(93)90072-N
28.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.10.1016/S0022-5096(98)00103-3
29.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.10.1016/S0022-5096(99)00022-8
30.
Chen
,
S. H.
, and
Wang
,
T. C.
,
2000
, “
A New Hardening Law for Strain Gradient Plasticity
,”
Acta Mater.
,
48
(
16
), pp.
3997
4005
.10.1016/S1359-6454(00)00216-0
31.
Gudmundson
,
P.
,
2004
, “
A Unified Treatment of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1379
1406
.10.1016/j.jmps.2003.11.002
32.
Fleck
,
N. A.
, and
Willis
,
J. R.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory—Part I: Scalar Plastic Multiplier
,”
J. Mech. Phys. Solids
,
57
(
1
), pp.
161
177
.10.1016/j.jmps.2008.09.010
33.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2009
, “
Thermodynamics Applied to Gradient Theories Involving the Accumulated Plastic Strain: The Theories of Aifantis and Fleck and Hutchinson and Their Generalization
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
405
421
.10.1016/j.jmps.2008.12.002
34.
Gupta
,
A.
,
Steigmann
,
D. J.
, and
Stölken
,
J. S.
,
2011
, “
Aspects of the Phenomenological Theory of Elastic-Plastic Deformation
,”
J. Elast.
,
104
(
1–2
), pp.
249
266
.10.1007/s10659-010-9288-z
35.
Niordson
,
C. F.
, and
Hutchinson
,
J. W.
,
2011
, “
Basic Strain Gradient Plasticity Theories With Application to Constrained Film Deformation
,”
J. Mech. Mater. Struct.
,
6
(
1–4
), pp.
395
416
.10.2140/jomms.2011.6.395
36.
Krishnan
,
J.
, and
Steigmann
,
D. J.
,
2014
, “
A Polyconvex Formulation of Isotropic Elastoplasticity Theory
,”
IMA J. Appl. Math.
,
79
(
5
), pp.
722
738
.10.1093/imamat/hxt049
37.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
2003
, “
Hardness Trends in Micron Scale Indentation
,”
J. Mech. Phys. Solids
,
51
(
11
), pp.
2037
2056
.10.1016/j.jmps.2003.09.011
38.
Gao
,
X.-L.
,
2006
, “
An Expanding Cavity Model Incorporating Strain-Hardening and Indentation Size Effects
,”
Int. J. Solids Struct.
,
43
(
21
), pp.
6615
6629
.10.1016/j.ijsolstr.2006.01.008
39.
Coleman
,
B. D.
, and
Hodgdon
,
M. L.
,
1985
, “
On Shear Bands in Ductile Materials
,”
Arch. Ration. Mech. Anal.
,
90
(
3
), pp.
219
247
.
40.
Gao
,
X.-L.
,
2002
, “
Analytical Solution of a Borehole Problem Using Strain Gradient Plasticity
,”
ASME J. Eng. Mater. Technol.
,
124
(
3
), pp.
365
370
.10.1115/1.1480408
41.
Yu
,
M.-H.
,
2002
, “
Advances in Strength Theories for Materials Under Complex Stress State in the 20th Century
,”
ASME Appl. Mech. Rev.
,
55
(
3
), pp.
169
218
.10.1115/1.1472455
42.
Yu
,
M.-H.
,
1983
, “
Twin Shear Stress Yield Criterion
,”
Int. J. Mech. Sci.
,
25
(
1
), pp.
71
74
.10.1016/0020-7403(83)90088-7
43.
Little
,
R. W.
,
1973
,
Elasticity
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
44.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
Oxford, UK
.
45.
Sowerby
,
R.
, and
Uko
,
D. K.
,
1979
, “
A Review of Certain Aspects of the Bauschinger Effect in Metals
,”
Mater. Sci. Eng.
,
41
(
1
), pp.
43
58
.10.1016/0025-5416(79)90043-0
46.
Bate
,
P. S.
, and
Wilson
,
D. V.
,
1986
, “
Analysis of the Bauschinger Effect
,”
Acta Metall.
,
34
(
6
), pp.
1097
1105
.10.1016/0001-6160(86)90220-8
47.
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Kendall
,
D. P.
,
1999
, “
Bauschinger Effect Design Procedures for Autofrettaged Tubes Including Material Removal and Sachs' Method
,”
ASME J. Pressure Vessel Technol.
,
121
(
4
), pp.
430
437
.10.1115/1.2883726
48.
Livieri
,
P.
, and
Lazzarin
,
P.
,
2002
, “
Autofrettaged Cylindrical Vessels and Bauschinger Effect: An Analytical Frame for Evaluating Residual Stress Distributions
,”
ASME J. Pressure Vessel Technol.
,
124
(
1
), pp.
38
46
.10.1115/1.1425809
49.
de Swardt
,
R. R.
,
2006
, “
Material Models for the Finite Element Analysis of Materials Exhibiting a Pronounced Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
190
195
.10.1115/1.2172967
50.
Chen
,
H. F.
,
2009
, “
Lower and Upper Bound Shakedown Analysis of Structures With Temperature-Dependent Yield Stress
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011202
.10.1115/1.4000369
51.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2001
, “
Shakedown and Limit Analyses for 3-D Structures Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
78
(
6
), pp.
443
451
.10.1016/S0308-0161(01)00052-7
52.
Polizzotto
,
C.
,
1993
, “
On the Conditions to Prevent Plastic Shakedown of Structures: Part II—The Plastic Shakedown Limit Load
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
20
25
.10.1115/1.2900750
53.
Maier
,
G.
,
2001
, “
On Some Issues in Shakedown Analysis
,”
ASME J. Appl. Mech.
,
68
(
5
), pp.
799
808
.10.1115/1.1379368
54.
Zhu
,
H. T.
,
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1997
, “
Strain Gradients and Continuum Modeling of Size Effect in Metal Matrix Composites
,”
Acta Mech.
,
121
(
1–4
), pp.
165
176
.10.1007/BF01262530
You do not currently have access to this content.