Two novel nonparametric identification approaches are proposed for piezoelectric mechanical systems. The novelty of the approaches is using not only mechanical signals but also electric signals. The expressions for unknown mechanical and electric terms are given based on the Hilbert transform. The signals are decomposed and re-assembled to obtain smooth stiffness and damping curves. The current mapping approach is developed to identify accurately a piezoelectric mechanical system with strongly nonlinear electric terms. The developed identification approaches are successfully implemented to simulate signals obtained from different nonlinear piezoelectric mechanical systems, including Duffing nonlinearity, softening and hardening nonlinearity, and Duffing nonlinearity with strong nonlinear electric terms. The proposed approaches are successfully applied to experimental signals of a circular laminated plate device in order to identify the nonlinear stiffness functions, damping functions, electromechanical coupling functions, and equivalent capacitance functions. The results show both softening and hardening nonlinearity in the stiffness characteristic and weak nonlinearity in electric characteristics. The results of the Hilbert transform based approach and the current mapping approach are compared, and the outcomes show good agreements.

References

1.
Khan
,
A.
, and
Kim
,
H. S.
,
2018
, “
Assessment of Sensor Debonding Failure in System Identification of Smart Composite Laminates
,”
NDT & E Int.
,
93
, pp.
24
33
.
2.
Abdollahi
,
A.
, and
Arias
,
I.
,
2015
, “
Constructive and Destructive Interplay Between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121003
.
3.
Wei
,
C. F.
, and
Jing
,
X. J.
,
2017
, “
A Comprehensive Review on Vibration Energy Harvesting: Modelling and Realization
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
1
18
.
4.
Yang
,
Z. B.
, and
Zu
,
J.
,
2014
, “
High-Efficiency Compressive-Mode Energy Harvester Enhanced by a Multi-Stage Force Amplification Mechanism
,”
Energy Convers. Manage
,
88
, pp.
829
833
.
5.
Chen
,
L. Q.
, and
Jiang
,
W. A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
6.
Tao
,
K.
,
Tang
,
L. H.
,
Wu
,
J.
,
Lye
,
S. W.
,
Chang
,
H. L.
, and
Miao
,
J. M.
,
2018
, “
Investigation of Multimodal Electret-Based MEMS Energy Harvester With Impact-Induced Nonlinearity
,”
IEEE/ASME J. Microelectromech. Syst.
,
27
(
2
), pp.
276
288
.https://ieeexplore.ieee.org/document/8281027
7.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Parameter Identification and Optimization in Piezoelectric Energy Harvesting: Analytical Relations, Asymptotic Analyses, and Experimental Validations
,”
J. Syst. Control Eng.
,
225
(
4
), pp.
485
496
.
8.
Goldschmidtboeing
,
F.
,
Wischke
,
M.
,
Eichhorn
,
C.
, and
Peter
,
W.
,
2011
, “
Parameter Identification for Resonant Piezoelectric Energy Harvesters in the Low and High-Coupling Regimes
,”
J. Micromech. Microeng.
,
21
(
4
), p.
045006
.
9.
Chen
,
L. Q.
,
Yang
,
J.
, and
Yuan
,
T. C.
,
2017
, “
Nonlinear Characteristic of a Circular Composite Plate Energy Harvester Experiments and Simulations
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2495
2506
.
10.
Boisseau
,
S.
,
Despesse
,
G.
, and
Seddik
,
B. A.
,
2013
, “
Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061013
.
11.
Lan
,
C. B.
,
Qin
,
W. Y.
, and
Deng
,
W. Z.
,
2015
, “
Energy Harvesting by Dynamic Unstability and Internal Resonance for Piezoelectric Beam
,”
J. Appl. Phys.
,
105
(
9
), p.
093902
.
12.
Zou
,
H. X.
,
Zhang
,
W. M.
,
Wei
,
K. X.
,
Li
,
W. B.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2016
, “
Design and Analysis of a Piezoelectric Vibration Energy Harvester Using Rolling Mechanism
,”
ASME J. Vib. Acoust
,
138
(
5
), p.
051007
.
13.
Fan
,
K. Q.
,
Chang
,
J. W.
,
Pedrycz
,
W.
,
Liu
,
Z. H.
, and
Zhu
,
Y. M.
,
2015
, “
A Nonlinear Piezoelectric Energy Harvester for Various Mechanical Motions
,”
J. Appl. Phys.
,
106
(
22
), p.
094102
.
14.
Stanton
,
S. C.
,
Erturk
,
A.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Piezoelectricity in Electroelastic Energy Harvesters: Modeling and Experimental Identification
,”
J. Appl. Phys.
,
108
(
4
), p.
074903
.
15.
Dick
,
A. J.
,
Balachandran
,
B.
,
DeVoe
,
D. L.
, and
Mote
,
C. D.
,
2006
, “
Parametric Identification of Piezoelectric Microscale Resonators
,”
J. Micromech. Microeng.
,
16
(
8
), pp.
1593
1601
.
16.
Nico
,
V.
,
Frizzell
,
R.
, and
Punch
,
J.
,
2017
, “
Nonlinear Analysis of a Two-Degree-of-Freedom Vibration Energy Harvester Using High Order Spectral Analysis Techniques
,”
Smart Mater. Struct.
,
26
(
4
), p.
045029
.
17.
Harris
,
P.
,
Arafa
,
M.
,
Litak
,
G.
, and
Bowen
,
C. R.
,
2017
, “
Output Response Identification in a Multistable System for Piezoelectric Energy Harvesting
,”
Eur. Phys. J. B
,
90
(
1
), p.
20
.
18.
Zhou
,
S. X.
,
Cao
,
J. Y.
,
Inman
,
D. J.
,
Lin
,
J.
,
Liu
,
S. S.
, and
Wang
,
Z. Z.
,
2014
, “
Broadband Tristable Energy Harvester: Modeling and Experiment Verification
,”
Appl. Energy
,
133
, pp.
33
39
.
19.
Green
,
P. L.
,
Worden
,
K.
, and
Sims
,
N. D.
,
2013
, “
On the Identification and Modelling of Friction in a Randomly Excited Energy Harvester
,”
J. Sound Vib.
,
332
(
19
), pp.
4696
4708
.
20.
Leadenham
,
S.
, and
Erturk
,
A.
,
2014
, “
M-Shaped Asymmetric Nonlinear Oscillator for Broadband Vibration Energy Harvesting: Harmonic Balance Analysis and Experimental Validation
,”
J. Sound Vib.
,
333
(
23
), pp.
6209
6223
.
21.
Leadenham
,
S.
, and
Erturk
,
A.
,
2015
, “
Nonlinear M-Shaped Broadband Piezoelectric Energy Harvester for Very Low Base Accelerations: Primary and Secondary Resonances
,”
Smart Mater. Struct.
,
24
(
5
), p.
055021
.
22.
Wu
,
Y. P.
,
Ji
,
H. L.
,
Qiu
,
J. H.
, and
Han
,
L.
,
2017
, “
A 2-Degree-of-Freedom Cubic Nonlinear Piezoelectric Harvester Intended for Practical Low-Frequency Vibration
,”
Sens. Actuators, A
,
264
, pp.
1
10
.
23.
Zou
,
H. X.
,
Zhang
,
W. M.
,
Wei
,
K. X.
,
Li
,
W. B.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2016
, “
A Compressive-Mode Wideband Vibration Energy Harvester Using a Combination of Bistable and Flextensional Mechanisms
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121005
.
24.
Yao
,
M. H.
,
Hu
,
W. X.
, and
Zhang
,
W.
,
2017
, “
Nonlinear Frequency Responses of the Bistable Piezoelectric Plate
,”
Procedia IUTAM
,
22
, pp.
208
215
.
25.
Wang
,
C.
,
Zhang
,
Q. C.
, and
Wang
,
W.
,
2017
, “
Low-Frequency Wideband Vibration Energy Harvesting by Using Frequency Up-Conversion and Quin-Stable Nonlinearity
,”
J. Sound Vib.
,
399
(
1
), pp.
169
181
.
26.
Kremer
,
D.
, and
Liu
,
K. F.
,
2014
, “
A Nonlinear Energy Sink With an Energy Harvester: Transient Responses
,”
J. Sound Vib.
,
333
(
20
), pp.
4859
4880
.
27.
Yuan
,
T. C.
,
Yang
,
J.
, and
Chen
,
L. Q.
,
2017
, “
Experimental Identification of Hardening and Softening Nonlinearity in Circular Laminated Plates
,”
Int. J. Nonlinear Mech.
,
95
, pp.
296
306
.
28.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1979
, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
433
447
.
29.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
.
30.
Brewick
,
P. T.
,
Masri
,
S. F.
,
Carboni
,
B.
, and
Lacarbonara
,
W.
,
2016
, “
Data-Based Nonlinear Identification and Constitutive Modeling of Hysteresis in NiTiNOL and Steel Strands
,”
J. Eng. Mech.
,
142
(
12
), p.
04016107
.
31.
Brewick
,
P. T.
,
Masri
,
S. F.
,
Carbonib
,
B.
, and
Lacarbonara
,
W.
,
2017
, “
Enabling Reduced-Order Data-Driven Nonlinear Identification and Modeling Through Naïve Elastic Net Regularization
,”
Int. J. Nonlinear Mech.
,
94
, pp.
46
58
.
32.
Keith
,
W.
,
Daryl
,
H.
,
Muhammed
,
H.
, and
Douglas
,
E. A.
,
2009
, “
Nonlinear System Identification of Automotive Dampers: A Time and Frequency-Domain Analysis
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
104
126
.
33.
Peng
,
Z. K.
,
Meng
,
G.
, and
Chu
,
F. L.
,
2011
, “
Polynomial Chirplet Transform With Application to Instantaneous Frequency Estimation
,”
IEEE Trans. Instrum. Meas.
,
60
(
9
), pp.
3222
3229
.
34.
Cohen
,
N.
,
Bucher
,
I.
, and
Feldman
,
M.
,
2012
, “
Slow-Fast Response Decomposition of a Bi-Stable Energy Harvester
,”
Mech. Syst. Signal Process.
,
31
, pp.
29
39
.
35.
Huang
,
S. Q.
,
Yang
,
Y.
,
Liu
,
S. W.
, and
Chu
,
X. C.
,
2017
, “
A Large-Diaphragm Piezoelectric Panel Loudspeaker and Its Acoustic Frequency Response Simulation Method
,”
Appl. Acoust.
,
125
, pp.
176
183
.
36.
Braun
,
S.
, and
Feldman
,
M.
,
2011
, “
Decomposition of Non-Stationary Signals Into Varying Time Scales: Some Aspects of the EMD and HVD Methods
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2608
2630
.
You do not currently have access to this content.