This paper presents a method to achieve high deformability levels in dielectric elastomer actuators (DEAs) by applying a modulated voltage waveform. The method relies on supplying the electrostatic energy during the specific phase of the oscillation cycle, resulting in the enhanced travel range at a relatively low driving voltage. We consider a standard sandwich configuration of the DE actuator with neo-Hookean material model and outline an energy-based approach for delineating the underlying principles of the proposed method. A comparison of the deformability levels achieved using the quasi-static, Heaviside step, and the modulated input waveforms is presented. Significant reduction in instability voltages together with a considerable increase in the stable actuation limit is observed in the case of the modulated voltage input. The estimates of the stability thresholds are validated by integrating the equation of motion obtained using Hamilton's principle. The effect of energy dissipation is assessed by considering variations in the quality factor. Further, a qualitative comparison with experimental observations is presented highlighting the practical feasibility of the method. This investigation can find its potential use in the design and development of DEAs subjected to a time-dependent motion.

References

1.
O'Halloran
,
A.
,
O'Malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
071101
.
2.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
3.
Suo
,
Z.
,
2012
, “
Mechanics of Stretchable Electronics and Soft Machines
,”
MRS Bull.
,
37
(
3
), p.
218225
.
4.
Shintake
,
J.
,
Schubert
,
B.
,
Rosset
,
S.
,
Shea
,
H.
, and
Floreano
,
D.
,
2015
, “
Variable Stiffness Actuator for Soft Robotics Using Dielectric Elastomer and Low-Melting-Point Alloy
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
1097
1102
.
5.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can Be Converted?
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
33
41
.
6.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Electromechanical and Dynamic Analyses of Tunable Dielectric Elastomer Resonator
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3754
3761
.
7.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
8.
Chakraborti
,
P.
,
Toprakci
,
H. A. K.
,
Yang
,
P.
,
Di Spigna
,
N.
,
Franzon
,
P.
, and
Ghosh
,
T.
,
2012
, “
A Compact Dielectric Elastomer Tubular Actuator for Refreshable Braille Displays
,”
Sens. Actuators A: Phys.
,
179
, pp.
151
157
.
9.
Hochradel
,
K.
,
Rupitsch
,
S. J.
,
Sutor
,
A.
,
Lerch
,
R.
,
Vu
,
D. K.
, and
Steinmann
,
P.
,
2012
, “
Dynamic Performance of Dielectric Elastomers Utilized as Acoustic Actuators
,”
Appl. Phys. A
,
107
(
3
), pp.
531
538
.
10.
Biddiss
,
E.
, and
Chau
,
T.
,
2008
, “
Dielectric Elastomers as Actuators for Upper Limb Prosthetics: Challenges and Opportunities
,”
Med. Eng. Phys.
,
30
(
4
), pp.
403
418
.
11.
Wissler
,
M.
, and
Mazza
,
E.
,
2005
, “
Modeling and Simulation of Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
14
(
6
), p.
1396
.
12.
Joglekar
,
M. M.
,
2015
, “
Dynamic-Instability Parameters of Dielectric Elastomer Actuators With Equal Biaxial Prestress
,”
AIAA J.
,
53
(
10
), pp.
3129
3133
.
13.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
061921
.
14.
Zhou
,
J.
,
Hong
,
W.
,
Zhao
,
X.
,
Zhang
,
Z.
, and
Suo
,
Z.
,
2008
, “
Propagation of Instability in Dielectric Elastomers
,”
Int. J. Solids Struct.
,
45
(
13
), pp.
3739
3750
.
15.
Leng
,
J.
,
Liu
,
L.
,
Liu
,
Y.
,
Yu
,
K.
, and
Sun
,
S.
,
2009
, “
Electromechanical Stability of Dielectric Elastomer
,”
Appl. Phys. Lett.
,
94
(
21
), p.
211901
.
16.
Kofod
,
G.
,
2008
, “
The Static Actuation of Dielectric Elastomer Actuators: How Does Pre-Stretch Improve Actuation?
,”
J. Phys. D: Appl. Phys.
,
41
(
21
), p.
215405
.
17.
Sheng
,
J.
,
Chen
,
H.
, and
Li
,
B.
,
2011
, “
Effect of Temperature on the Stability of Dielectric Elastomers
,”
J. Phys. D: Appl. Phys.
,
44
(
36
), p.
365406
.
18.
Jiménez
,
S. M.
, and
McMeeking
,
R. M.
,
2013
, “
Deformation Dependent Dielectric Permittivity and Its Effect on Actuator Performance and Stability
,”
Int. J. Non-Linear Mech.
,
57
, pp.
183
191
.
19.
Díaz-Calleja
,
R.
,
Riande
,
E.
, and
Sanchis
,
M. J.
,
2008
, “
On Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
93
(
10
), p.
101902
.
20.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
, and
Joseph
,
J. P.
,
1998
, “
Electrostriction of Polymer Dielectrics With Compliant Electrodes as a Means of Actuation
,”
Sens. Actuators A: Phys.
,
64
(
1
), pp.
77
85
.
21.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and deBotton, G.,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
206
209
.
22.
Wang
,
H.
,
Cai
,
S.
,
Carpi
,
F.
, and
Suo
,
Z.
,
2012
, “
Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031008
.
23.
Joglekar
,
M. M.
,
2014
, “
An Energy-Based Approach to Extract the Dynamic Instability Parameters of Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091010
.
24.
Sharma
,
A. K.
,
Bajpayee
,
S.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2017
, “
Dynamic Instability of Dielectric Elastomer Actuators Subjected to Unequal Biaxial Prestress
,”
Smart Mater. Struct.
,
26
(
11
), p.
115019
.
25.
Sharma
,
A. K.
,
Arora
,
N.
, and
Joglekar
,
M. M.
,
2018
, “
Dc Dynamic Pull-in Instability of a Dielectric Elastomer Balloon: An Energy-Based Approach
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
474
(
2211
), p. 20170900.
26.
Duduta
,
M.
,
Clarke
,
D. R.
, and
Wood
,
R. J.
,
2017
, “
A High Speed Soft Robot Based on Dielectric Elastomer Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
4346
4351
.
27.
Xu
,
B.-X.
,
Mueller
,
R.
,
Theis
,
A.
,
Klassen
,
M.
, and
Gross
,
D.
,
2012
, “
Dynamic Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
100
(
11
), p.
112903
.
28.
Sheng
,
J.
,
Chen
,
H.
,
Li
,
B.
, and
Wang
,
Y.
,
2014
, “
Nonlinear Dynamic Characteristics of a Dielectric Elastomer Membrane Undergoing in-Plane Deformation
,”
Smart Mater. Struct.
,
23
(
4
), p.
045010
.
29.
Dubois
,
P.
,
Rosset
,
S.
,
Niklaus
,
M.
,
Dadras
,
M.
, and
Shea
,
H.
,
2008
, “
Voltage Control of the Resonance Frequency of Dielectric Electroactive Polymer (DEAP) Membranes
,”
J. Microelectromech. Syst.
,
17
(
5
), pp.
1072
1081
.
30.
Carpi
,
F.
,
Menon
,
C.
, and
De Rossi
,
D.
,
2010
, “
Electroactive Elastomeric Actuator for All-Polymer Linear Peristaltic Pumps
,”
IEEE/ASME Trans. Mechatronics
,
15
(
3
), pp.
460
470
.
31.
Castaner
,
L. M.
, and
Senturia
,
S. D.
,
1999
, “
Speed-Energy Optimization of Electrostatic Actuators Based on Pull-in
,”
J. Microelectromech. Syst.
,
8
(
3
), pp.
290
298
.
32.
Muldavin
,
J. B.
, and
Rebeiz
,
G. M.
,
2001
, “
Nonlinear Electro-Mechanical Modeling of MEMS Switches
,”
IEEE
MTT-S International Microwave Symposium Digest
, Phoenix, AZ, May 20–24, pp.
2119
2122
.
33.
Nielson
,
G. N.
, and
Barbastathis
,
G.
,
2006
, “
Dynamic Pull-in of Parallel-Plate and Torsional Electrostatic MEMS Actuators
,”
J. Microelectromech. Syst.
,
15
(
4
), pp.
811
821
.
34.
Wang
,
F.
,
Lu
,
T.
, and
Wang
,
T.
,
2016
, “
Nonlinear Vibration of Dielectric Elastomer Incorporating Strain Stiffening
,”
Int. J. Solids Struct.
,
87
, pp.
70
80
.
You do not currently have access to this content.