Soft electroactive materials can undergo large deformation subjected to either mechanical or electrical stimulus, and hence, they can be excellent candidates for designing extremely flexible and adaptive structures and devices. This paper proposes a simple one-dimensional soft phononic crystal (PC) cylinder made of dielectric elastomer (DE) to show how large deformation and electric field can be used jointly to tune the longitudinal waves propagating in the PC. A series of soft electrodes, which are mechanically negligible, are placed periodically along the DE cylinder, and hence, the material can be regarded as uniform in the undeformed state. This is also the case for the uniformly prestretched state induced by a static axial force only. The effective periodicity of the structure is then achieved through two loading paths, i.e., by maintaining the longitudinal stretch and applying an electric voltage over any two neighboring electrodes or by holding the axial force and applying the voltage. All physical field variables for both configurations can be determined exactly based on the nonlinear theory of electroelasticity. An infinitesimal wave motion is further superimposed on the predeformed configurations, and the corresponding dispersion equations are derived analytically by invoking the linearized theory for incremental motions. Numerical examples are finally considered to show the tunability of wave propagation behavior in the soft PC cylinder. The outstanding performance regarding the band gap (BG) property of the proposed soft dielectric PC is clearly demonstrated by comparing with the conventional design adopting the hard piezoelectric material. One particular point that should be emphasized is that soft dielectric PCs are susceptible to various kinds of failure (buckling, electromechanical instability (EMI), electric breakdown (EB), etc.), imposing corresponding limits on the external stimuli. This has been carefully examined for the present soft PC cylinder such that the applied electric voltage is always assumed to be less than the critical voltage except for one case, in which we illustrate that the snap-through instability of the axially free PC cylinder made of a generalized Gent material may be used to efficiently trigger a sharp transition in the BGs.

References

1.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer
,
Berlin
.
2.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
3.
Ma
,
G. C.
, and
Sheng
,
P.
,
2015
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
.
4.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
, p.
16001
.
5.
Goffaux
,
C.
, and
Vigneron
,
J. P.
,
2001
, “
Theoretical Study of a Tunable Phononic Band Gap System
,”
Phys. Rev. B
,
64
(
7
), p.
075118
.
6.
Hayes
,
M.
, and
Rivlin
,
R. S.
,
1961
, “
Propagation of a Plane Wave in an Isotropic Elastic Material Subjected to Pure Homogeneous Deformation
,”
Arch. Ration. Mech. Anal.
,
8
(
1
), pp.
15
22
.
7.
Destrade
,
M.
, and
Saccomandi
,
G.
,
2007
,
Waves in Nonlinear Pre-Stressed Materials
,
Springer
,
Wien, Austria
.
8.
Parnell
,
W. J.
,
2007
, “
Effective Wave Propagation in a Prestressed Nonlinear Elastic Composite Bar
,”
IMA J. Appl. Math.
,
72
(
2
), pp.
223
244
.
9.
Bertoldi
,
K.
, and
Boyce
,
M.
,
2008
, “
Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations
,”
Phys. Rev. B
,
78
(
18
), p.
184107
.
10.
Rudykh
,
S.
, and
Boyce
,
M. C.
,
2014
, “
Transforming Wave Propagation in Layered Media Via Instability-Induced Interfacial Wrinkling
,”
Phys. Rev. Lett.
,
112
(
3
), p.
034301
.
11.
Shan
,
S.
,
Kang
,
S. H.
,
Wang
,
P.
,
Qu
,
C.
,
Shian
,
S.
,
Chen
,
E. R.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves
,”
Adv. Funct. Mater.
,
24
(
31
), pp.
4935
4942
.
12.
Babaee
,
S.
,
Wang
,
P.
, and
Bertoldi
,
K.
,
2015
, “
Three-Dimensional Adaptive Soft Phononic Crystals
,”
J. Appl. Phys.
,
117
(
24
), p.
244903
.
13.
Bayat
,
A.
, and
Gordaninejad
,
F.
,
2015
, “
Switching Band-Gaps of a Phononic Crystal Slab by Surface Instability
,”
Smart Mater. Struct.
,
24
(
7
), p.
075009
.
14.
Li
,
G. Y.
,
Zheng
,
Y.
,
Cao
,
Y.
,
Feng
,
X. Q.
, and
Zhang
,
W.
,
2016
, “
Controlling Elastic Wave Propagation in a Soft Bilayer System Via Wrinkling-Induced Stress Patterns
,”
Soft Matter
,
12
(
18
), pp.
4204
4213
.
15.
Li
,
Y.
, and
Xu
,
Y. L.
,
2017
, “
Tuning and Switching of Band Gap of the Periodically Undulated Beam by the Snap Through Buckling
,”
AIP Adv.
,
7
(
5
), p.
055210
.
16.
Bertoldi
,
K.
,
2017
, “
Harnessing Instabilities to Design Tunable Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
47
, pp.
51
61
.
17.
Huang
,
Y.
,
Shen
,
X. D.
,
Zhang
,
C. L.
, and
Chen
,
W. Q.
,
2014
, “
Mechanically Tunable Band Gaps in Compressible Soft Phononic Laminated Composites With Finite Deformation
,”
Phys. Lett. A
,
378
(
30
), pp.
2285
2289
.
18.
Huang
,
Y.
,
Chen
,
W. Q.
,
Wang
,
Y. S.
, and
Yang
,
W.
,
2015
, “
Multiple Refraction Switches Realized by Stretching Elastomeric Scatterers in Sonic Crystals
,”
AIP Adv.
,
5
(
2
), p.
027138
.
19.
Barnwell
,
E. G.
,
Parnell
,
W. J.
, and
Abrahams
,
I. D.
,
2016
, “
Antiplane Elastic Wave Propagation in Pre-Stressed Periodic Structures; Tuning, Band Gap Switching and Invariance
,”
Wave Motion
,
63
, pp.
98
110
.
20.
Barnwell
,
E. G.
,
Parnell
,
W. J.
, and
Abrahams
,
I. D.
,
2017
, “
Tunable Elastodynamic Band Gaps
,”
Extreme Mech. Lett.
,
12
, pp.
23
29
.
21.
Celli
,
P.
,
Gonella
,
S.
,
Tajeddini
,
V.
,
Muliana
,
A.
,
Ahmed
,
S.
, and
Ounaies
,
Z.
,
2017
, “
Wave Control Through Soft Microstructural Curling: Bandgap Shifting, Reconfigurable Anisotropy and Switchable Chirality
,”
Smart Mater. Struct.
,
26
(
3
), p.
035001
.
22.
Chen
,
Y. Y.
,
Li
,
T. T.
,
Scarpa
,
F.
, and
Wang
,
L. F.
,
2017
, “
Lattice Metamaterials With Mechanically Tunable Poisson's Ratio for Vibration Control
,”
Phys. Rev. Appl.
,
7
(
2
), p.
024012
.
23.
Galich
,
P. I.
,
Fang
,
N. X.
,
Boyce
,
M. C.
, and
Rudykh
,
S.
,
2017
, “
Elastic Wave Propagation in Finitely Deformed Layered Materials
,”
J. Mech. Phys. Solids
,
98
, pp.
390
410
.
24.
Yang
,
W. P.
, and
Chen
,
L. W.
,
2007
, “
The Tunable Acoustic Band Gaps of Two-Dimensional Phononic Crystals With a Dielectric Elastomer Cylindrical Actuator
,”
Smart Mater. Struct.
,
17
(
1
), p.
015011
.
25.
Yang
,
W. P.
,
Wu
,
L. Y.
, and
Chen
,
L. W.
,
2008
, “
Refractive and Focusing Behaviours of Tunable Sonic Crystals With Dielectric Elastomer Cylindrical Actuators
,”
J. Phys. D: Appl. Phys.
,
41
(
13
), p.
135408
.
26.
Wu
,
L. Y.
,
Wu
,
M. L.
, and
Chen
,
L. W.
,
2009
, “
The Narrow Pass Band Filter of Tunable 1D Phononic Crystals With a Dielectric Elastomer Layer
,”
Smart Mater. Struct.
,
18
(
1
), p.
015011
.
27.
Wang
,
C. C.
, and
Chen
,
L. W.
,
2010
, “
Tunable Two-Dimensional Photonic Crystal Couplers Made of Dielectric Elastomer Inclusions
,”
Appl. Opt.
,
49
(
18
), pp.
3452
3457
.
28.
Wang
,
H. W.
,
Chang
,
I. L.
, and
Chen
,
L. W.
,
2012
, “
Beam Manipulating by Graded Photonic Crystal Slab Made of Dielectric Elastomer Actuators
,”
Opt. Commun.
,
285
(
24
), pp.
5524
5530
.
29.
Gei
,
M.
,
Roccabianca
,
S.
, and
Bacca
,
M.
,
2011
, “
Controlling Bandgap in Electroactive Polymer-Based Structures
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
102
107
.
30.
Shmuel
,
G.
, and
deBotton
,
G.
,
2012
, “
Band-Gaps in Electrostatically Controlled Dielectric Laminates Subjected to Incremental Shear Motions
,”
J. Mech. Phys. Solids
,
60
(
11
), pp.
1970
1981
.
31.
Shmuel
,
G.
, and
Pernas-Salomón
,
R.
,
2016
, “
Manipulating Motions of Elastomer Films by Electrostatically-Controlled Aperiodicity
,”
Smart Mater. Struct.
,
25
(
12
), p.
125012
.
32.
Bortot
,
E.
, and
Shmuel
,
G.
,
2017
, “
Tuning Sound With Soft Dielectrics
,”
Smart Mater. Struct.
,
26
(
4
), p.
045028
.
33.
Galich
,
P. I.
, and
Rudykh
,
S.
,
2017
, “
Shear Wave Propagation and Band Gaps in Finitely Deformed Dielectric Elastomer Laminates: Long Wave Estimates and Exact Solution
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091002
.
34.
Getz
,
R.
, and
Shmuel
,
G.
,
2017
, “
Band Gap Tunability in Deformable Dielectric Composite Plates
,”
Int. J. Solids Struct.
,
128
, pp.
11
22
.
35.
Bayat
,
A.
, and
Gordaninejad
,
F.
,
2015
, “
Band-Gap of a Soft Magnetorheological Phononic Crystal
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011011
.
36.
Harne
,
R. L.
,
Deng
,
Z. X.
, and
Dapino
,
M. J.
,
2017
, “
Adaptive Magnetoelastic Metamaterials: A New Class of Magnetorheological Elastomers
,”
J. Intell. Mater. Syst. Struct.
, epub.
37.
Chen
,
W. Q.
, and
Dai
,
H. H.
,
2012
, “
Waves in Pre-Stretched Incompressible Soft Electroactive Cylinders: Exact Solution
,”
Acta Mech. Solida Sin.
,
25
(
5
), pp.
530
541
.
38.
Wang
,
Y. Z.
,
Dai
,
H. H.
, and
Chen
,
W. Q.
,
2015
, “
Kink and Kink-Like Waves in Pre-Stretched Mooney-Rivlin Viscoelastic Rods
,”
AIP Adv.
,
5
(
8
), p.
087167
.
39.
Wang
,
Y. Z.
,
Zhang
,
C. L.
,
Dai
,
H. H.
, and
Chen
,
W. Q.
,
2015
, “
Adjustable Solitary Waves in Electroactive Rods
,”
J. Sound Vib.
,
355
, pp.
188
207
.
40.
Su
,
Y. P.
,
Wang
,
H. M.
,
Zhang
,
C. L.
, and
Chen
,
W. Q.
,
2016
, “
Propagation of Non-Axisymmetric Waves in an Infinite Soft Electroactive Hollow Cylinder Under Uniform Biasing Fields
,”
Int. J. Solids Struct.
,
81
, pp.
262
273
.
41.
Wu
,
B.
,
Su
,
Y. P.
,
Chen
,
W. Q.
, and
Zhang
,
C. Z.
,
2017
, “
On Guided Circumferential Waves in Soft Electroactive Tubes Under Radially Inhomogeneous Biasing Fields
,”
J. Mech. Phys. Solids
,
99
, pp.
116
145
.
42.
Zhou
,
W. J.
,
Chen
,
W. Q.
,
Shen
,
X. D.
,
Su
,
Y. P.
, and
Pan
,
E. N.
,
2017
, “
On Surface Waves in a Finitely Deformed Coated Half-Space
,”
Int. J. Solids Struct.
,
128
, pp.
50
66
.
43.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2005
, “
Nonlinear Electroelasticity
,”
Acta Mech.
,
174
(
3–4
), pp.
167
183
.
44.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2010
, “
Electroelastic Waves in a Finitely Deformed Electroactive Material
,”
IMA J. Appl. Math.
,
75
(
4
), pp.
603
636
.
45.
Wu
,
B.
,
Zhang
,
C. L.
,
Zhang
,
C. Z.
, and
Chen
,
W. Q.
,
2016
, “
Theory of Electroelasticity Accounting for Biasing Fields: Retrospect, Comparison and Perspective
,”
Adv. Mech.
,
46
, p.
201601
(in Chinese).
46.
Suo
,
Z. G.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
47.
Zhu
,
F. B.
,
Zhang
,
C. L.
,
Qian
,
J.
, and
Chen
,
W. Q.
,
2016
, “
Mechanics of Dielectric Elastomers: Materials, Structures, and Devices
,”
J. Zhejiang Univ. Sci. A
,
17
(1), pp.
1
21
.
48.
Wang
,
H. M.
, and
Qu
,
S. X.
,
2016
, “
Constitutive Models of Artificial Muscles: A Review
,”
J. Zhejiang Univ. Sci. A
,
17
(
1
), pp.
22
36
.
49.
Galich
,
P. I.
, and
Rudykh
,
S.
,
2016
, “
Manipulating Pressure and Shear Waves in Dielectric Elastomers Via External Electric Stimuli
,”
Int. J. Solids Struct.
,
91
, pp.
18
25
.
50.
Wang
,
P.
,
Shim
,
J.
, and
Bertoldi
,
K.
,
2013
, “
Effects of Geometric and Material Nonlinearities on Tunable Band Gaps and Low-Frequency Directionality of Phononic Crystals
,”
Phys. Rev. B
,
88
(
1
), p.
014304
.
51.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
52.
Degraeve
,
S.
,
Granger
,
C.
,
Dubus
,
B.
,
Vasseur
,
J. O.
,
Pham
,
T. M.
, and
Hladky-Hennion
,
A. C.
,
2014
, “
Bragg Band Gaps Tunability in an Homogeneous Piezoelectric Rod With Periodic Electrical Boundary Conditions
,”
J. Appl. Phys.
,
115
(
19
), p.
194508
.
53.
Mirsky
,
I.
,
1965
, “
Wave Propagation in Transversely Isotropic Circular Cylinders—Part I: Theory
,”
J. Acoust. Soc. Am.
,
37
(
6
), pp.
1016
1021
.
54.
Bertoldi
,
K.
, and
Gei
,
M.
,
2011
, “
Instabilities in Multilayered Soft Dielectrics
,”
J. Mech. Phys. Solids
,
59
(1), pp.
18
42
.
55.
Zhu
,
J.
,
Stoyanov
,
H.
,
Kofod
,
G.
, and
Suo
,
Z.
,
2010
, “
Large Deformation and Electromechanical Instability of a Dielectric Elastomer Tube Actuator
,”
J. Appl. Phys.
,
108
(
7
), p.
074113
.
56.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
deBotton
,
G.
,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
206
209
.
57.
Zhang
,
P.
, and
Parnell
,
W. J.
,
2017
, “
Soft Phononic Crystals With Deformation-Independent Band Gaps
,”
Proc. R. Soc. A
,
473
(
2200
), p. 20160865.
You do not currently have access to this content.