We theoretically study the electromechanical behaviors of a laminated thin-film piezoelectric semiconductor (PS) composite plate with flexural deformation. The nonlinear equations for drift currents of electrons and holes are linearized for a small carrier concentration perturbation. Following the structural theory systemized by R. D. Mindlin, a system of two-dimensional (2D) equations for the laminated thin-film PS plate, including the lowest order coupled extensional and flexural motion, are presented by expanding the displacement, potential, and the incremental concentration of electrons and holes as power series of the plate thickness. Based on the derived 2D equations, the analytical expressions of the electromechanical fields and distribution of electrons in the thin-film PS plate with an n-type ZnO layer subjected to a static bending are presented. The numerical results show that the electromechanical behaviors and piezotronic effects can be effectively controlled by the external applied force and initial concentration of carriers. The derived 2D equations and numerical results in this paper are helpful for developing piezotronic devices.

References

1.
Wang
,
Z. L.
,
2003
, “
Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides-From Materials to Nanodevices
,”
Adv. Mater.
,
15
(
5
), pp.
432
436
.
2.
Wang
,
Z. L.
,
2010
, “
Piezopotential Gated Nanowire Devices: Piezotronics and Piezo-Phototronics
,”
Nano Today
,
5
(
6
), pp.
540
552
.
3.
Kumar
,
B.
, and
Kim
,
S. W.
,
2011
, “
Recent Advances in Power Generation Through Piezoelectric Nanogenerators
,”
J. Mater. Chem.
,
21
(
47
), pp.
18946
18958
.
4.
Gao
,
Y. F.
, and
Wang
,
Z. L.
,
2009
, “
Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductive Nanowire
,”
Nano Lett.
,
9
(
3
), pp.
1103
1110
.
5.
Hu
,
Y. F.
,
Chang
,
Y. L.
,
Fei
,
P.
,
Snyder
,
R. L.
, and
Wang
,
Z. L.
,
2010
, “
Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects
,”
ACS Nano
,
4
(
2
), pp.
1234
1240
.
6.
Araneo
,
R.
,
Lovat
,
G.
,
Burghignoli
,
P.
, and
Falconi
,
C.
,
2012
, “
Piezo-Semiconductive Quasi-1D Nanodevices With or Without Anti-Symmetry
,”
Adv. Mater.
,
24
(
34
), pp.
4719
4724
.
7.
Shen
,
Y.
,
Hong
,
J.
,
Xu
,
S.
,
Lin
,
S. S.
,
Fang
,
H.
,
Zhang
,
S.
,
Ding
,
Y.
,
Snyder
,
R. L.
, and
Wang
,
Z. L.
,
2010
, “
A General Approach for Fabricating Arc-Shaped Composite Nanowire Arrays by Pulsed Laser Deposition
,”
Adv. Funct. Mater.
,
20
(
5
), pp.
703
707
.
8.
Xue
,
H. Z.
,
Pan
,
N.
,
Li
,
M.
,
Wu
,
Y. K.
,
Wang
,
X. P.
, and
Hou
,
J. G.
,
2010
, “
Probing the Strain Effect on Near Band Edge Emission of a Curved ZnO Nanowire via Spatially Resolved Cathodoluminescence
,”
Nanotechnology
,
21
(
21
), pp.
215701
.
9.
Gao
,
P. X.
,
Song
,
J. H.
,
Liu
,
J.
, and
Wang
,
Z. L.
,
2007
, “
Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices
,”
Adv. Mater.
,
19
(
1
), pp.
67
72
.
10.
Choi
,
M. Y.
,
Choi
,
D.
,
Jin
,
M. J.
,
Kim
,
I.
,
Kim
,
S. H.
,
Choi
,
J. Y.
,
Lee
,
S. Y.
,
Kim
,
J. M.
, and
Kim
,
S. W.
,
2009
, “
Mechanically Powered Transparent Flexible Charge-Generating Nanodevices With Piezoelectric ZnO Nanorods
,”
Adv. Mater.
,
21
(
21
), pp.
2185
2189
.
11.
Romano
,
G.
,
Mantini
,
G.
,
Garlo
,
A. D.
,
D'Amico
,
A.
,
Falconi
,
C.
, and
Wang
,
Z. L.
,
2011
, “
Piezoelectric Potential in Vertically Aligned Nanowires for High Output Nanogenerators
,”
Nanotechnology
,
22
(
46
), pp.
465401
.
12.
Yu
,
J.
,
Ippolito
,
S. J.
,
Wlodarski
,
W.
,
Strano
,
M.
, and
Kalantar-Zadeh
,
K.
,
2010
, “
Nanorod Based Shottky Contact Gas Sensors in Reversed Bias Condition
,”
Nanotechnology
,
21
(
26
), pp.
265502
.
13.
Wang
,
X. D.
,
Zhou
,
J.
,
Song
,
J. H.
,
Liu
,
J.
,
Xu
,
N. S.
, and
Wang
,
Z. L.
,
2006
, “
Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire
,”
Nano Lett.
,
6
(
12
), pp.
2768
2772
.
14.
Buyukkose
,
S.
,
Hernandez-Minguez
,
A.
,
Vratzov
,
B.
,
Somaschini
,
C.
,
Geelhaar
,
L.
,
Riechert
,
H.
,
van der Wiel
,
W. G.
, and
Santos
,
P. V.
,
2014
, “
High-Frequency Acoustic Charge Transport in GaAs Nanowires
,”
Nanotechnology
,
25
(
13
), pp.
135204
.
15.
Yang
,
Q.
,
Wang
,
W. H.
,
Xu
,
S.
, and
Wang
,
Z. L.
,
2011
, “
Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect
,”
Nano Lett.
,
11
(
9
), pp.
4012
4017
.
16.
Yang
,
Q.
,
Guo
,
X.
,
Wang
,
W. H.
,
Zhang
,
Y.
,
Xu
,
S.
,
Lien
,
H. D.
, and
Wang
,
Z. L.
,
2010
, “
Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-Phototronic Effect
,”
ACS Nano
,
4
(
10
), pp.
6285
6291
.
17.
Hutson
,
A. R.
, and
White
,
D. L.
,
1962
, “
Elastic Wave Propagation in Piezoelectric Semiconductors
,”
J. Appl. Phys.
,
33
(
1
), pp.
40
47
.
18.
Auld
,
B. A.
,
1973
,
Acoustic Fields and Waves in Solids
, Vol.
I
,
John Wiley and Sons
,
New York
.
19.
Pierret
,
R. F.
,
1988
,
Semiconductor Fundamentals
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
20.
Zhang
,
C. L.
,
Wang
,
X. Y.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
,
2016
, “
Carrier Distribution and Electromechanical Fields in a Free Piezoelectric Semiconductor Rod
,”
J. Zhejiang Univ. Sci. A
,
17
(
1
), pp.
37
44
.
21.
Zhang
,
C. L.
,
Wang
,
X. Y.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
,
2016
, “
Propagation of Extensional Waves in a Piezoelectric Semiconductor Rod
,”
AIP Adv.
,
6
(
4
), pp.
045301
.
22.
Zhang
,
C. L.
,
Wang
,
X. Y.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
,
2016
, “
An Analysis of the Extension of a ZnO Piezoelectric Semiconductor Nanofiber Under an Axial Force
,”
Smart Mater. Struct.
,
26
(
2
), pp.
025030
.
23.
Zhang
,
C. L.
,
Luo
,
Y. X.
,
Cheng
,
R. R.
, and
Wang
,
X. Y.
,
2017
, “
Electromechanical Fields in Piezoelectric Semiconductor Nanofibers Under an Axial Force
,”
MRS Adv.
,
2
(
56
), pp.
3421
3426
.
24.
Zhang
,
C. L.
,
Wang
,
X. Y.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
,
2018
,
Generalized Models and Non-Classical Approaches in Complex Materials
, Vol.
2
,
H.
Altenbach
,
J.
Pouget
,
M.
Rousseau
,
B.
Collet
, and
Th.
Michelitsch
, eds.,
Springer International Publishing AG
,
Cham
, Chap. 13.
25.
Fan
,
S. Q.
,
Liang
,
Y. X.
,
Xie
,
J. M.
, and
Hu
,
Y. T.
,
2017
, “
Exact Solutions to the Electromechanical Quantities Inside a Statically-Bent Circular ZnO Nanowire by Taking Into Account Both the Piezoelectric Property and the Semiconducting Performance: Part I-Linearized Analysis
,”
Nano Energy
,
40
, pp.
82
87
.
26.
Dai
,
X. Y.
,
Zhu
,
F.
,
Qin
,
Z. H.
, and
Yang
,
J. S.
,
2018
, “
Electric Potential and Carrier Distribution in a Piezoelectric Semiconductor Nanowire in Time-Harmonic Bending Vibration
,”
Nano Energy
,
43
, pp.
22
28
.
27.
Chen
,
R. R.
,
Zhang
,
C. L.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
,
2018
, “
Piezotronic Effects in the Extension of a Composite Fiber of Piezoelectric Dielectrics and Nonpiezoelectric Semiconductors
,”
J. Appl. Phys.
,
124
(
6
), pp.
064506
.
28.
Luo
,
Y. X.
,
Zhang
,
C. L.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
,
2018
, “
Piezopotential in a Bended Composite Fiber Made of a Semiconductive Core and of Two Piezoelectric Layers With Opposite Polarities
,”
Nano Energy
,
54
, pp.
341
348
.
29.
Gao
,
Y. F.
, and
Wang
,
Z. L.
,
2007
, “
Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics
,”
Nano Lett.
,
7
(
8
), pp.
2499
2505
.
30.
Hu
,
Y. T.
,
Zeng
,
Y.
, and
Yang
,
J. S.
,
2007
, “
A Mode III Crack in a Piezoelectric Semiconductor of Crystals With 6 mm Symmetry
,”
Int. J. Solids Struct.
,
44
(
11
), pp.
3928
3928
.
31.
Sladek
,
J.
,
Sladek
,
V.
,
Pan
,
E.
, and
Young
,
D. L.
,
2014
, “
Dynamic Anti-Plane Crack Analysis in Functional Graded Piezoelectric Semiconductor Crystals
,”
Comput. Model. Eng. Sci.
,
99
(
4
), pp.
273
296
.
32.
Sladek
,
J.
,
Sladek
,
V.
,
Pan
,
E.
, and
Münsche
,
M.
,
2014
, “
Fracture Analysis in Piezoelectric Semiconductors Under a Thermal Load
,”
Eng. Fract. Mech.
,
126
, pp.
27
39
.
33.
Zhao
,
M. H.
,
Pan
,
Y. B.
,
Fan
,
C. Y.
, and
Xu
,
G. T.
,
2016
, “
Extended Displacement Discontinuity Method for Analysis of Cracks in 2D Piezoelectric Semiconductors
,”
Int. J. Solids Struct.
,
94–95
, pp.
50
59
.
34.
Fan
,
C. Y.
,
Yan
,
Y.
,
Xu
,
G. T.
, and
Zhao
,
M. H.
,
2016
, “
Piezoelectric-Conductor Iterative Method for Analysis of Cracks in Piezoelectric Semiconductors via the Finite Element Method
,”
Eng. Fract. Mech.
,
165
, pp.
183
196
.
35.
Zhao
,
M. H.
,
Li
,
Y.
,
Yan
,
Y.
, and
Fan
,
C. Y.
,
2016
, “
Singularity Analysis of Planar Cracks in Three-Dimensional Piezoelectric Semiconductors via Extended Displacement Discontinuity Boundary Integral Equation Method
,”
Eng. Anal. Bound. Elem.
,
67
, pp.
115
125
.
36.
Chung
,
S. Y.
,
Kim
,
S.
,
Lee
,
J. H.
,
Kim
,
K.
, and
Kim
,
S. W.
,
2012
, “
All-Solution-Processed Flexible Thin Film Piezoelectric Nanogenerator
,”
Adv. Mater.
,
24
(
45
), pp.
6022
6027
.
37.
Mindlin
,
R. D.
,
1972
, “
High Frequency Vibrations of Piezoelectric Crystal Plates
,”
Int. J. Solids Struct.
,
8
(
7
), pp.
895
906
.
38.
Bugdayci
,
N.
, and
Bogy
,
D. B.
,
1981
, “
A Two-Dimensional Theory for Piezoelectric Layers Used in Electro-Mechanical Transducers
,”
Int. J. Solids Struct.
,
17
(
12
), pp.
1159
1178
.
39.
Lee
,
P. C. Y.
,
Syngellakis
,
S.
, and
Hou
,
J. P.
,
1987
, “
A Two-Dimensional Theory for High-Frequency Vibrations of Piezoelectric Crystal Plates With or Without Electrodes
,”
J. Appl. Phys.
,
61
(
4
), pp.
1249
1262
.
40.
Tiersten
,
H. F.
,
2002
, “
On the Thickness Expansion of the Electric Potential in the Determination of Two-Dimensional Equations for the Vibration of Electroded Piezoelectric Plates
,”
J. Appl. Phys.
,
91
(
4
), pp.
2277
2283
.
41.
Batra
,
R. C.
, and
Vidoli
,
S.
,
2002
, “
Higher-Order Piezoelectric Plate Theory Derived From a Three-Dimensional Variational Principle
,”
AIAA J.
,
40
(
1
), pp.
91
104
.
42.
Zhang
,
C. L.
,
Yang
,
J. S.
, and
Chen
,
W. Q.
,
2009
, “
Theoretical Modeling of Frequency-Dependent Magnetoelectric Effects in Laminated Multiferroic Plates
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
(
12
), pp.
2750
2758
.
43.
Wu
,
B.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
,
2014
, “
Two-Dimensional Equations for High-Frequency Extensional Vibrations of Piezoelectric Ceramic Plates With Thickness Poling
,”
Arch. Appl. Mech.
,
84
(
12
), pp.
1917
1935
.
44.
Li
,
N.
,
Qian
,
Z. H.
, and
Yang
,
J. S.
,
2017
, “
Two-Dimensional Equations for Piezoelectric Thin-Film Acoustic Wave Resonators
,”
Int. J. Solids Struct.
,
110–111
, pp.
170
177
.
45.
Yang
,
J. S.
,
Yang
,
X. M.
, and
Turner
,
J. A.
,
2004
, “
Amplification of Acoustic Waves in Laminated Piezoelectric Semiconductor Plates
,”
Arch. Appl. Mech.
,
74
(
3–4
), pp.
288
298
.
46.
Raumann
,
G.
,
1963
, “
The Anisotropy of the Elastic Constants of Transversely Isotropic Polyethylene Terephthalate
,”
Br. J. Appl. Phys.
,
14
(
11
), pp.
795
799
.
You do not currently have access to this content.