Abstract
In this perspective, we provide a brief account of the key mechanics issues underpinning the development of soft solid electrolytes for next-generation batteries.
Issue Section:
Review Article
Keywords:
constitutive modeling of materials
References
1.
Zito
, R.
, and Ardebili
, H.
, 2019
, Energy Storage
, Wiley-Scrivener
, Salem, MA
.2.
Lukatskaya
, M. R.
, Dunn
, B.
, and Gogotsi
, Y.
, 2016
, “Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage
,” Nat. Commun.
, 7
(1
), p. 12647
. 10.1038/ncomms126473.
Liu
, C.
, Li
, F.
, Ma
, L.-P.
, and Cheng
, H.-M.
, 2010
, “Advanced Materials for Energy Storage
,” Adv. Mater.
, 22
(8
), pp. E28
–E62
. 10.1002/adma.v22:84.
Liu
, N.
, Li
, W.
, Pasta
, M.
, and Cui
, Y.
, 2014
, “Nanomaterials for Electrochemical Energy Storage
,” Front. Phys.
, 9
(3
), pp. 323
–350
. 10.1007/s11467-013-0408-75.
Sethuraman
, V. A.
, Chon
, M. J.
, Shimshak
, M.
, Srinivasan
, V.
, and Guduru
, P. R.
, 2010
, “In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,” J. Power. Sources.
, 195
(15
), pp. 5062
–5066
. 10.1016/j.jpowsour.2010.02.0136.
Bower
, A. F.
, Guduru
, P. R.
, and Sethuraman
, V. A.
, 2011
, “A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,” J. Mech. Phys. Solids.
, 59
(4
), pp. 804
–828
. 10.1016/j.jmps.2011.01.0037.
Zhao
, K.
, Wang
, W. L.
, Gregoire
, J.
, Pharr
, M.
, Suo
, Z.
, Vlassak
, J. J.
, and Kaxiras
, E.
, 2011
, “Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study
,” Nano. Lett.
, 11
(7
), pp. 2962
–2967
. 10.1021/nl201501s8.
Yan
, X.
, Gouissem
, A.
, Guduru
, P. R.
, and Sharma
, P.
, 2017
, “Elucidating the Atomistic Mechanisms Underpinning Plasticity in Li-si Nanostructures
,” Phys. Rev. Mater.
, 1
(5
), p. 055401
. 10.1103/PhysRevMaterials.1.0554019.
Di
, Leo
, and Anand
, L.
, 2014
, “A Cahn-Hhilliard-Type Phase-Field Theory for Species Diffusion Coupled With Large Elastic Deformations: Application to Phase-Separating Li-Ion Electrode Materials
,” J. Mech. Phys. Solids.
, 70
, pp. 1
–29
. 10.1016/j.jmps.2014.05.00110.
Zhao
, K.
, Pharr
, M.
, Vlassak
, J. J.
, and Suo
, Z.
, 2010
, “Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,” J. Appl. Phys.
, 108
(7
), p. 073517
. 10.1063/1.349261711.
Pharr
, M.
, Suo
, Z.
, and Vlassak
, J. J.
, 2013
, “Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries
,” Nano. Lett.
, 13
(11
), pp. 5570
–5577
. 10.1021/nl403197m12.
Kammoun
, M.
, Berg
, S.
, and Ardebili
, H.
, 2015
, “Flexible Thin-Film Battery Based on Graphene-Oxide Embedded in Solid Polymer Electrolyte
,” Nanoscale
, 7
(41
), pp. 17516
–17522
. 10.1039/C5NR04339E13.
Armand
, M. B.
, Bruce
, P. G.
, Forsyth
, M.
, Scrosati
, B.
, and Wieczorek
, W.
, 2011
, “Polymer Electrolytes
,” Energ. Mater.
, pp. 1
–31
.14.
Xu
, S.
, Zhang
, Y.
, Cho
, J.
, Lee
, J.
, Huang
, X.
, Jia
, L.
, Fan
, J. A.
, Su
, Y.
, Su
, J.
, Zhang
, H.
, Cheng
, H.
, Lu
, B.
, Yu
, C.
, Chuang
, C.
, Kim
, T.-i
, Song
, T.
, Shigeta
, K.
, Kang
, S.
, Dagdeviren
, C.
, Petrov
, I.
, Braun
, P. V.
, Huang
, Y.
, Paik
, U.
, Paik
, U.
, and Rogers
, J. A.
, 2013
, “Stretchable Batteries with Self-similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,” Nat. Commun.
, 4
, pp. 1543
. 10.1038/ncomms255315.
Zhang
, Y.
, Huang
, Y.
, and Rogers
, J. A.
, 2015
, “Mechanics of Stretchable Batteries and Supercapacitors
,” Current Opinion Solid State Mater. Sci.
, 19
(3
), pp. 190
–199
. 10.1016/j.cossms.2015.01.00216.
Kettlgruber
, G.
, Kaltenbrunner
, M.
, Siket
, C. M.
, Moser
, R.
, Graz
, I. M.
, Schwödiauer
, R.
, and Bauer
, S.
, 2013
, “Intrinsically Stretchable and Rechargeable Batteries for Self-Powered Stretchable Electronics
,” J. Mater. Chem. A.
, 1
(18
), pp. 5505
–5508
. 10.1039/c3ta00019b17.
Li
, Q.
, and Ardebili
, H.
, 2016
, “Flexible Thin-Film Battery Based on Solid-Like Ionic Liquid-Polymer Electrolyte
,” J. Power. Sources.
, 303
, pp. 17
–21
. 10.1016/j.jpowsour.2015.10.09918.
Hu
, L.
, Wu
, H.
, La Mantia
, F.
, and Cui
, Y.
, 2010
, “Thin, Flexible Secondary Li-Ion Paper Batteries
,” ACS. Nano.
, 4
(10
), pp. 5843
–5848
. 10.1021/nn101815819.
Song
, Z.
, Wang
, X.
, Lv
, C.
, An
, Y.
, Liang
, M.
, Ma
, T.
, He
, D.
, Zheng
, Y.-J.
, Huang
, S.-Q.
, Yu
, H.
, and Jiang
, H.
, 2015
, “Kirigami-Based Stretchable Lithium-Ion Batteries
,” Sci. Rep.
, 5
, p. 10988
. 10.1038/srep1098820.
Zhang
, Y.
, Bai
, W.
, Cheng
, X.
, Ren
, J.
, Weng
, W.
, Chen
, P.
, Fang
, X.
, Zhang
, Z.
, and Peng
, H.
, 2014
, “Flexible and Stretchable Lithium-Ion Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs
,” Angew. Chem., Int. Ed.
, 53
(52
), pp. 14564
–14568
. 10.1002/anie.20140936621.
Gaikwad
, A. M.
, Zamarayeva
, A. M.
, Rousseau
, J.
, Chu
, H.
, Derin
, I.
, and Steingart
, D. A.
, 2012
, “Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric
,” Adv. Mater.
, 24
(37
), pp. 5071
–5076
. 10.1002/adma.20120132922.
Li
, Q.
, Wood
, E.
, and Ardebili
, H.
, 2013
, “Elucidating the Mechanisms of Ion Conductivity Enhancement in Polymer Nanocomposite Electrolytes for Lithium Ion Batteries
,” Appl. Phys. Lett.
, 102
(24
), p. 243903
. 10.1063/1.480983723.
Hong
, W.
, Zhao
, X.
, Zhou
, J.
, and Suo
, Z.
, 2008
, “A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,” J. Mech. Phys. Solids.
, 56
(5
), pp. 1779
–1793
. 10.1016/j.jmps.2007.11.01024.
Sillamoni
, I. J. C.
, and Idiart
, M. I.
, 2015
, “A Model Problem Concerning Ionic Transport in Microstructured Solid Electrolytes
,” Contin. Mech. Thermodynamics
, 27
(6
), pp. 941
–957
. 10.1007/s00161-014-0391-425.
Hong
, W.
, Zhao
, X.
, and Suo
, Z.
, 2010
, “Large Deformation and Electrochemistry of Polyelectrolyte Gels
,” J. Mech. Phys. Solids.
, 58
(4
), pp. 558
–577
. 10.1016/j.jmps.2010.01.00526.
Ganser
, M.
, Hildebrand
, F. E.
, Kamlah
, M.
, and McMeeking
, R. M.
, 2019
, “A Finite Strain Electro-Chemo-Mechanical Theory for Ion Transport With Application to Binary Solid Electrolytes
,” J. Mech. Phys. Solids.
, 125
, pp. 681
–713
. 10.1016/j.jmps.2019.01.00427.
Croce
, F.
, Appetecchi
, G.
, Persi
, L.
, and Scrosati
, B.
, 1998
, “Nanocomposite Polymer Electrolytes for Lithium Batteries
,” Nature
, 394
(6692
), pp. 456
–458
. 10.1038/2881828.
Merkel
, T.
, Freeman
, B.
, Spontak
, R.
, He
, Z.
, Pinnau
, I.
, Meakin
, P.
, and Hill
, A.
, 2003
, “Sorption, Transport, and Structural Evidence for Enhanced Free Volume in Poly (4-Methyl-2-Pentyne)/Fumed Silica Nanocomposite Membranes
,” Chem. Mater.
, 15
(1
), pp. 109
–123
. 10.1021/cm020672j29.
Li
, Q.
, and Ardebili
, H.
, 2014
, “Atomistic Investigation of the Nanoparticle Size and Shape Effects on Ionic Conductivity of Solid Polymer Electrolytes
,” Solid. State. Ionics.
, 268
, pp. 156
–161
. 10.1016/j.ssi.2014.10.01430.
Sillamoni
, I. J. C.
, and Idiart
, M. I.
, 2016
, “Nonlinear Ionic Transport Through Microstructured Solid Electrolytes: Homogenization Estimates
,” Modell. Simul. Mater. Sci. Eng.
, 24
(7
), p. 075008
. 10.1088/0965-0393/24/7/07500831.
Kelly
, T.
, Ghadi
, B. M.
, Berg
, S.
, and Ardebili
, H.
, 2016
, “In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte
,” Sci. Rep.
, 6
(1
), p. 20128
. 10.1038/srep2012832.
Berg
, S.
, Kelly
, T.
, Porat
, I.
, Moradi-Ghadi
, B.
, and Ardebili
, H.
, 2018
, “Mechanical Deformation Effects on Ion Conduction in Stretchable Polymer Electrolytes
,” Appl. Phys. Lett.
, 113
(8
), p. 083903
. 10.1063/1.504036833.
Ding
, B.
, Li
, X.
, Zhang
, X.
, Wu
, H.
, Xu
, Z.
, and Gao
, H.
, 2015
, “Brittle Versus Ductile Fracture Mechanism Transition in Amorphous Lithiated Silicon: From Intrinsic Nanoscale Cavitation to Shear Banding
,” Nano Energy
, 18
, pp. 89
–96
. 10.1016/j.nanoen.2015.10.00234.
Ding
, B.
, Wu
, H.
, Xu
, Z.
, Li
, X.
, and Gao
, H.
, 2017
, “Stress Effects on Lithiation in Silicon
,” Nano Energy
, 38
, pp. 486
–493
. 10.1016/j.nanoen.2017.06.02135.
Mendez
, J.
, Ponga
, M.
, and Ortiz
, M.
, 2018
, “Diffusive Molecular Dynamics Simulations of Lithiation of Silicon Nanopillars
,” J. Mech. Phys. Solids.
, 115
, pp. 123
–141
. 10.1016/j.jmps.2018.03.00836.
Wang
, H.
, and Chew
, H. B.
, 2016
, “Molecular Dynamics Simulations of Plasticity and Cracking in Lithiated Silicon Electrodes
,” Extreme Mech. Lett.
, 9
, pp. 503
–513
. 10.1016/j.eml.2016.02.02037.
Siqueira
, L. J.
, and Ribeiro
, M. C.
, 2005
, “Molecular Dynamics Simulation of the Polymer Electrolyte Poly (ethylene Oxide)/ Li Cl O 4. I. Structural Properties
,” J. Chem. Phys.
, 122
(19
), p. 194911
. 10.1063/1.189964338.
Siqueira
, L. J.
, and Ribeiro
, M. C.
, 2006
, “Molecular Dynamics Simulation of the Polymer Electrolyte Poly (Ethylene Oxide)/li Cl O 4. Ii. Dynamical Properties
,” J. Chem. Phys.
, 125
(21
), p. 214903
. 10.1063/1.240022139.
Halley
, J.
, Duan
, Y.
, Curtiss
, L.
, and Baboul
, A.
, 1999
, “Lithium Perchlorate Ion Pairing in a Model of Amorphous Polyethylene Oxide
,” J. Chem. Phys.
, 111
(7
), pp. 3302
–3308
. 10.1063/1.47960940.
Duan
, Y.
, Halley
, J.
, Curtiss
, L.
, and Redfern
, P.
, 2005
, “Mechanisms of Lithium Transport in Amorphous Polyethylene Oxide
,” J. Chem. Phys.
, 122
(5
), p. 054702
. 10.1063/1.183955541.
Yan
, X.
, Cao
, P.
, Tao
, W.
, Sharma
, P.
, and Park
, H. S.
, 2016
, “Atomistic Modeling at Experimental Strain Rates and Timescales
,” J. Phys. D Appl. Phys.
, 49
(49
), p. 493002
. 10.1088/0022-3727/49/49/49300242.
Yan
, X.
, Gouissem
, A.
, and Sharma
, P.
, 2015
, “Atomistic Insights Into Li-Ion Diffusion in Amorphous Silicon
,” Mech. Mater.
, 91
, pp. 306
–312
. 10.1016/j.mechmat.2015.04.001Copyright © 2019 by ASME
You do not currently have access to this content.