Abstract

In this perspective, we provide a brief account of the key mechanics issues underpinning the development of soft solid electrolytes for next-generation batteries.

References

1.
Zito
,
R.
, and
Ardebili
,
H.
,
2019
,
Energy Storage
,
Wiley-Scrivener
,
Salem, MA
.
2.
Lukatskaya
,
M. R.
,
Dunn
,
B.
, and
Gogotsi
,
Y.
,
2016
, “
Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage
,”
Nat. Commun.
,
7
(
1
), p.
12647
. 10.1038/ncomms12647
3.
Liu
,
C.
,
Li
,
F.
,
Ma
,
L.-P.
, and
Cheng
,
H.-M.
,
2010
, “
Advanced Materials for Energy Storage
,”
Adv. Mater.
,
22
(
8
), pp.
E28
E62
. 10.1002/adma.v22:8
4.
Liu
,
N.
,
Li
,
W.
,
Pasta
,
M.
, and
Cui
,
Y.
,
2014
, “
Nanomaterials for Electrochemical Energy Storage
,”
Front. Phys.
,
9
(
3
), pp.
323
350
. 10.1007/s11467-013-0408-7
5.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power. Sources.
,
195
(
15
), pp.
5062
5066
. 10.1016/j.jpowsour.2010.02.013
6.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
,
V. A.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids.
,
59
(
4
), pp.
804
828
. 10.1016/j.jmps.2011.01.003
7.
Zhao
,
K.
,
Wang
,
W. L.
,
Gregoire
,
J.
,
Pharr
,
M.
,
Suo
,
Z.
,
Vlassak
,
J. J.
, and
Kaxiras
,
E.
,
2011
, “
Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study
,”
Nano. Lett.
,
11
(
7
), pp.
2962
2967
. 10.1021/nl201501s
8.
Yan
,
X.
,
Gouissem
,
A.
,
Guduru
,
P. R.
, and
Sharma
,
P.
,
2017
, “
Elucidating the Atomistic Mechanisms Underpinning Plasticity in Li-si Nanostructures
,”
Phys. Rev. Mater.
,
1
(
5
), p.
055401
. 10.1103/PhysRevMaterials.1.055401
9.
Di
,
Leo
, and
Anand
,
L.
,
2014
, “
A Cahn-Hhilliard-Type Phase-Field Theory for Species Diffusion Coupled With Large Elastic Deformations: Application to Phase-Separating Li-Ion Electrode Materials
,”
J. Mech. Phys. Solids.
,
70
, pp.
1
29
. 10.1016/j.jmps.2014.05.001
10.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(
7
), p.
073517
. 10.1063/1.3492617
11.
Pharr
,
M.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2013
, “
Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries
,”
Nano. Lett.
,
13
(
11
), pp.
5570
5577
. 10.1021/nl403197m
12.
Kammoun
,
M.
,
Berg
,
S.
, and
Ardebili
,
H.
,
2015
, “
Flexible Thin-Film Battery Based on Graphene-Oxide Embedded in Solid Polymer Electrolyte
,”
Nanoscale
,
7
(
41
), pp.
17516
17522
. 10.1039/C5NR04339E
13.
Armand
,
M. B.
,
Bruce
,
P. G.
,
Forsyth
,
M.
,
Scrosati
,
B.
, and
Wieczorek
,
W.
,
2011
, “
Polymer Electrolytes
,”
Energ. Mater.
, pp.
1
31
.
14.
Xu
,
S.
,
Zhang
,
Y.
,
Cho
,
J.
,
Lee
,
J.
,
Huang
,
X.
,
Jia
,
L.
,
Fan
,
J. A.
,
Su
,
Y.
,
Su
,
J.
,
Zhang
,
H.
,
Cheng
,
H.
,
Lu
,
B.
,
Yu
,
C.
,
Chuang
,
C.
,
Kim
,
T.-i
,
Song
,
T.
,
Shigeta
,
K.
,
Kang
,
S.
,
Dagdeviren
,
C.
,
Petrov
,
I.
,
Braun
,
P. V.
,
Huang
,
Y.
,
Paik
,
U.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2013
, “
Stretchable Batteries with Self-similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,”
Nat. Commun.
,
4
, pp.
1543
. 10.1038/ncomms2553
15.
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Mechanics of Stretchable Batteries and Supercapacitors
,”
Current Opinion Solid State Mater. Sci.
,
19
(
3
), pp.
190
199
. 10.1016/j.cossms.2015.01.002
16.
Kettlgruber
,
G.
,
Kaltenbrunner
,
M.
,
Siket
,
C. M.
,
Moser
,
R.
,
Graz
,
I. M.
,
Schwödiauer
,
R.
, and
Bauer
,
S.
,
2013
, “
Intrinsically Stretchable and Rechargeable Batteries for Self-Powered Stretchable Electronics
,”
J. Mater. Chem. A.
,
1
(
18
), pp.
5505
5508
. 10.1039/c3ta00019b
17.
Li
,
Q.
, and
Ardebili
,
H.
,
2016
, “
Flexible Thin-Film Battery Based on Solid-Like Ionic Liquid-Polymer Electrolyte
,”
J. Power. Sources.
,
303
, pp.
17
21
. 10.1016/j.jpowsour.2015.10.099
18.
Hu
,
L.
,
Wu
,
H.
,
La Mantia
,
F.
, and
Cui
,
Y.
,
2010
, “
Thin, Flexible Secondary Li-Ion Paper Batteries
,”
ACS. Nano.
,
4
(
10
), pp.
5843
5848
. 10.1021/nn1018158
19.
Song
,
Z.
,
Wang
,
X.
,
Lv
,
C.
,
An
,
Y.
,
Liang
,
M.
,
Ma
,
T.
,
He
,
D.
,
Zheng
,
Y.-J.
,
Huang
,
S.-Q.
,
Yu
,
H.
, and
Jiang
,
H.
,
2015
, “
Kirigami-Based Stretchable Lithium-Ion Batteries
,”
Sci. Rep.
,
5
, p.
10988
. 10.1038/srep10988
20.
Zhang
,
Y.
,
Bai
,
W.
,
Cheng
,
X.
,
Ren
,
J.
,
Weng
,
W.
,
Chen
,
P.
,
Fang
,
X.
,
Zhang
,
Z.
, and
Peng
,
H.
,
2014
, “
Flexible and Stretchable Lithium-Ion Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs
,”
Angew. Chem., Int. Ed.
,
53
(
52
), pp.
14564
14568
. 10.1002/anie.201409366
21.
Gaikwad
,
A. M.
,
Zamarayeva
,
A. M.
,
Rousseau
,
J.
,
Chu
,
H.
,
Derin
,
I.
, and
Steingart
,
D. A.
,
2012
, “
Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric
,”
Adv. Mater.
,
24
(
37
), pp.
5071
5076
. 10.1002/adma.201201329
22.
Li
,
Q.
,
Wood
,
E.
, and
Ardebili
,
H.
,
2013
, “
Elucidating the Mechanisms of Ion Conductivity Enhancement in Polymer Nanocomposite Electrolytes for Lithium Ion Batteries
,”
Appl. Phys. Lett.
,
102
(
24
), p.
243903
. 10.1063/1.4809837
23.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids.
,
56
(
5
), pp.
1779
1793
. 10.1016/j.jmps.2007.11.010
24.
Sillamoni
,
I. J. C.
, and
Idiart
,
M. I.
,
2015
, “
A Model Problem Concerning Ionic Transport in Microstructured Solid Electrolytes
,”
Contin. Mech. Thermodynamics
,
27
(
6
), pp.
941
957
. 10.1007/s00161-014-0391-4
25.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Large Deformation and Electrochemistry of Polyelectrolyte Gels
,”
J. Mech. Phys. Solids.
,
58
(
4
), pp.
558
577
. 10.1016/j.jmps.2010.01.005
26.
Ganser
,
M.
,
Hildebrand
,
F. E.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2019
, “
A Finite Strain Electro-Chemo-Mechanical Theory for Ion Transport With Application to Binary Solid Electrolytes
,”
J. Mech. Phys. Solids.
,
125
, pp.
681
713
. 10.1016/j.jmps.2019.01.004
27.
Croce
,
F.
,
Appetecchi
,
G.
,
Persi
,
L.
, and
Scrosati
,
B.
,
1998
, “
Nanocomposite Polymer Electrolytes for Lithium Batteries
,”
Nature
,
394
(
6692
), pp.
456
458
. 10.1038/28818
28.
Merkel
,
T.
,
Freeman
,
B.
,
Spontak
,
R.
,
He
,
Z.
,
Pinnau
,
I.
,
Meakin
,
P.
, and
Hill
,
A.
,
2003
, “
Sorption, Transport, and Structural Evidence for Enhanced Free Volume in Poly (4-Methyl-2-Pentyne)/Fumed Silica Nanocomposite Membranes
,”
Chem. Mater.
,
15
(
1
), pp.
109
123
. 10.1021/cm020672j
29.
Li
,
Q.
, and
Ardebili
,
H.
,
2014
, “
Atomistic Investigation of the Nanoparticle Size and Shape Effects on Ionic Conductivity of Solid Polymer Electrolytes
,”
Solid. State. Ionics.
,
268
, pp.
156
161
. 10.1016/j.ssi.2014.10.014
30.
Sillamoni
,
I. J. C.
, and
Idiart
,
M. I.
,
2016
, “
Nonlinear Ionic Transport Through Microstructured Solid Electrolytes: Homogenization Estimates
,”
Modell. Simul. Mater. Sci. Eng.
,
24
(
7
), p.
075008
. 10.1088/0965-0393/24/7/075008
31.
Kelly
,
T.
,
Ghadi
,
B. M.
,
Berg
,
S.
, and
Ardebili
,
H.
,
2016
, “
In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte
,”
Sci. Rep.
,
6
(
1
), p.
20128
. 10.1038/srep20128
32.
Berg
,
S.
,
Kelly
,
T.
,
Porat
,
I.
,
Moradi-Ghadi
,
B.
, and
Ardebili
,
H.
,
2018
, “
Mechanical Deformation Effects on Ion Conduction in Stretchable Polymer Electrolytes
,”
Appl. Phys. Lett.
,
113
(
8
), p.
083903
. 10.1063/1.5040368
33.
Ding
,
B.
,
Li
,
X.
,
Zhang
,
X.
,
Wu
,
H.
,
Xu
,
Z.
, and
Gao
,
H.
,
2015
, “
Brittle Versus Ductile Fracture Mechanism Transition in Amorphous Lithiated Silicon: From Intrinsic Nanoscale Cavitation to Shear Banding
,”
Nano Energy
,
18
, pp.
89
96
. 10.1016/j.nanoen.2015.10.002
34.
Ding
,
B.
,
Wu
,
H.
,
Xu
,
Z.
,
Li
,
X.
, and
Gao
,
H.
,
2017
, “
Stress Effects on Lithiation in Silicon
,”
Nano Energy
,
38
, pp.
486
493
. 10.1016/j.nanoen.2017.06.021
35.
Mendez
,
J.
,
Ponga
,
M.
, and
Ortiz
,
M.
,
2018
, “
Diffusive Molecular Dynamics Simulations of Lithiation of Silicon Nanopillars
,”
J. Mech. Phys. Solids.
,
115
, pp.
123
141
. 10.1016/j.jmps.2018.03.008
36.
Wang
,
H.
, and
Chew
,
H. B.
,
2016
, “
Molecular Dynamics Simulations of Plasticity and Cracking in Lithiated Silicon Electrodes
,”
Extreme Mech. Lett.
,
9
, pp.
503
513
. 10.1016/j.eml.2016.02.020
37.
Siqueira
,
L. J.
, and
Ribeiro
,
M. C.
,
2005
, “
Molecular Dynamics Simulation of the Polymer Electrolyte Poly (ethylene Oxide)/ Li Cl O 4. I. Structural Properties
,”
J. Chem. Phys.
,
122
(
19
), p.
194911
. 10.1063/1.1899643
38.
Siqueira
,
L. J.
, and
Ribeiro
,
M. C.
,
2006
, “
Molecular Dynamics Simulation of the Polymer Electrolyte Poly (Ethylene Oxide)/li Cl O 4. Ii. Dynamical Properties
,”
J. Chem. Phys.
,
125
(
21
), p.
214903
. 10.1063/1.2400221
39.
Halley
,
J.
,
Duan
,
Y.
,
Curtiss
,
L.
, and
Baboul
,
A.
,
1999
, “
Lithium Perchlorate Ion Pairing in a Model of Amorphous Polyethylene Oxide
,”
J. Chem. Phys.
,
111
(
7
), pp.
3302
3308
. 10.1063/1.479609
40.
Duan
,
Y.
,
Halley
,
J.
,
Curtiss
,
L.
, and
Redfern
,
P.
,
2005
, “
Mechanisms of Lithium Transport in Amorphous Polyethylene Oxide
,”
J. Chem. Phys.
,
122
(
5
), p.
054702
. 10.1063/1.1839555
41.
Yan
,
X.
,
Cao
,
P.
,
Tao
,
W.
,
Sharma
,
P.
, and
Park
,
H. S.
,
2016
, “
Atomistic Modeling at Experimental Strain Rates and Timescales
,”
J. Phys. D Appl. Phys.
,
49
(
49
), p.
493002
. 10.1088/0022-3727/49/49/493002
42.
Yan
,
X.
,
Gouissem
,
A.
, and
Sharma
,
P.
,
2015
, “
Atomistic Insights Into Li-Ion Diffusion in Amorphous Silicon
,”
Mech. Mater.
,
91
, pp.
306
312
. 10.1016/j.mechmat.2015.04.001
You do not currently have access to this content.