Abstract

The aim of this work is to compare two existing multilevel computational approaches coming from two different families of multiscale methods in a nonlinear solid mechanics framework. A locally adaptive multigrid method and a numerical homogenization technique are considered. Both classes of methods aim to enrich a global model representing the structure’s behavior with more sophisticated local models depicting fine localized phenomena. It is clearly shown that even being developed with different vocations, such approaches reveal several common features. The main conceptual difference relying on the scale separation condition has finally a limited influence on the algorithmic aspects. Hence, this comparison enables to highlight a unified framework for multiscale coupling methods.

References

1.
E
,
W.
,
2011
,
Principles of Multiscale Modelling
,
Cambridge University Press
,
Cambridge, UK
.
2.
Babuška
,
I.
, and
Guo
,
B.
,
1992
, “
The h, p and h-p Version of the Finite Element Method; Basis Theory and Applications
,”
Adv. Eng. Softw.
,
15
(
3
), pp.
159
174
. 10.1016/0965-9978(92)90097-Y
3.
Fish
,
J.
,
1992
, “
The S-version of the Finite Element Method
,”
Comput. Struct.
,
43
(
3
), pp.
539
547
. 10.1016/0045-7949(92)90287-A
4.
Brandt
,
A.
,
1977
, “
Multi-Level Adaptive Solutions to Boundary-Value Problems
,”
Math. Comput.
,
31
(
138
), pp.
333
390
. 10.1090/S0025-5718-1977-0431719-X
5.
Sanchez-Palencia
,
E.
,
1980
,
Homogenization Method for the Study of Composite Media
,
Springer
,
Berlin
.
6.
Bornert
,
M.
,
Bretheau
,
T.
, and
Gilormini
,
P.
,
2001
,
Homogénéisation En Mécanique Des Matériaux, Tome 1: Matériaux Aléatoires élastiques Et Milieux Périodiques
,
Hermes Science
,
Paris
.
7.
E
,
W.
, and
Engquist
,
B.
,
2003
, “
The Heterogeneous Multiscale Methods
,”
Commun. Math. Sci.
,
1
(
1
), pp.
87
132
. 10.4310/CMS.2003.v1.n1.a8
8.
Feyel
,
F.
, and
Chaboche
,
J.-L.
,
2000
, “
FE2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fibre SiC/Ti Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3–4
), pp.
309
330
. 10.1016/S0045-7825(99)00224-8
9.
Dvorak
,
G. J.
,
1992
, “
Transformation Field Analysis of Inelastic Composite Materials
,”
Proc.: Math. Phys. Sci.
,
437
(
1900
), pp.
311
327
.
10.
McCormick
,
S.
,
1984
,
Fast Adaptive Composite Grid (FAC) Methods: Theory for the Variational Case
,
Springer
,
Vienna
, pp.
115
121
.
11.
Hackbusch
,
W.
,
1984
,
Local Defect Correction Method and Domain Decomposition Techniques
(
Defect Correction Methods: Theory and Applications
),
Springer
,
Vienna
, pp.
89
113
.
12.
Koliesnikova
,
D.
,
Ramière
,
I.
, and
Lebon
,
F.
,
2020
, “
A Unified Framework for the Computational Comparison of Adaptive Mesh Refinement Strategies for All-Quadrilateral and All-Hexahedral Meshes: Locally Adaptive Multigrid Methods Versus h-Adaptive Methods
,” submitted.
13.
Barbié
,
L.
,
Ramière
,
I.
, and
Lebon
,
F.
,
2014
, “
Strategies Around the Local Defect Correction Multi-Level Refinement Method for Three-Dimensional Linear Elastic Problems
,”
Comput. Struct.
,
130
, pp.
73
90
. 10.1016/j.compstruc.2013.10.008
14.
Guedes
,
J.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
. 10.1016/0045-7825(90)90148-F
15.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
. 10.1016/0022-5096(63)90060-7
16.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
. 10.1016/0001-6160(73)90064-3
17.
Neuss
,
N.
,
Jäger
,
W.
, and
Wittum
,
G.
,
2001
, “
Homogenization and Multigrid
,”
Computing
,
66
(
1
), pp.
1
26
. 10.1007/s006070170036
18.
Gu
,
H.
,
Réthore
,
J.
,
Baietto
,
M.-C.
,
Sainsot
,
P.
,
Lecomte-Grosbras
,
P.
,
Venner
,
C.
, and
Lubrecht
,
A.
,
2016
, “
An Efficient Multigrid Solver for the 3D Simulation of Composite Materials
,”
Comput. Mater. Sci.
,
112
(
A
), pp.
230
237
. 10.1016/j.commatsci.2015.10.025
19.
Miehe
,
C.
, and
Bayreuther
,
C. G.
,
2007
, “
On Multiscale FE Analyses of Heterogeneous Structures: From Homogenization to Multigrid Solvers
,”
Int. J. Numer. Methods Eng.
,
71
(
10
), pp.
1135
1180
. 10.1002/nme.1972
20.
Brandt
,
A.
,
1994
, “
Rigorous Quantitative Analysis of Multigrid I: Constant Coefficients Two-Level Cycle With L2-Norm
,”
SIAM J. Numer. Anal.
,
31
(
6
), pp.
1695
1730
. 10.1137/0731087
21.
Whitcomb
,
J.
, and
Woo
,
K.
,
1993
, “
Application of Iterative Global/Local Finite-Element Analysis. Part 2: Geometrically Non-Linear Analysis
,”
Commun. Numer. Methods Eng.
,
9
(
9
), pp.
757
766
. 10.1002/cnm.1640090906
22.
Gendre
,
L.
,
Allix
,
O.
,
Gosselet
,
P.
, and
Comte
,
F.
,
2009
, “
Non-Intrusive and Exact Global/Local Techniques for Structural Problems With Local Plasticity
,”
Comput. Mech.
,
44
, pp.
233
245
. 10.1007/s00466-009-0372-9
23.
Passieux
,
J.-C.
,
Réthoré
,
J.
,
Gravouil
,
A.
, and
Baietto
,
M.-C.
,
2013
, “
Local/Global Non-Intrusive Crack Propagation Simulation Using a Multigrid X-FEM Solver
,”
Comput. Mech.
,
52
(
6
), pp.
1381
1393
. 10.1007/s00466-013-0882-3
24.
Fish
,
J.
, and
Belsky
,
V.
,
1995
, “
Multigrid Method for Periodic Heterogeneous Media. Part 2: Multiscale Modeling and Quality Control in Multidimensional Case
,”
Comput. Methods Appl. Mech. Eng.
,
126
(
1–2
), pp.
17
38
. 10.1016/0045-7825(95)00812-F
25.
Barbié
,
L.
,
Ramière
,
I.
, and
Lebon
,
F.
,
2015
, “
An Automatic Multilevel Refinement Technique Based on Nested Local Meshes for Nonlinear Mechanics
,”
Comput. Struct.
,
147
, pp.
14
25
. 10.1016/j.compstruc.2014.10.008
26.
Feyel
,
F.
,
1999
, “
Multiscale FE2 Elastoviscoplastic Analysis of Composite Structures
,”
Comput. Mater. Sci.
,
16
(
1–2
), pp.
344
354
. 10.1016/S0927-0256(99)00077-4
27.
Miehe
,
C.
,
Schotte
,
J.
, and
Schröder
,
J.
,
1999
, “
Computational Micro–Macro Transitions and Overall Moduli in the Analysis of Polycrystals at Large Strains
,”
Comput. Mater. Sci.
,
16
(
1–4
), pp.
372
382
. 10.1016/S0927-0256(99)00080-4
28.
Ramière
,
I.
,
Masson
,
R.
,
Michel
,
B.
, and
Bernaud
,
S.
,
2017
, “
Un schéma de calcul multi-échelles de type Éléments Finis au carré pour la simulation de combustibles nucléaires hétérogènes
,”
13e colloque national en calcul des structures, no. 126623
,
Université Paris-Saclay
,
May 2017
,
Giens, Var, France
.
29.
Michel
,
J.
, and
Suquet
,
P.
,
2003
, “
Nonuniform Transformation Field Analysis
,”
Int. J. Solids Struct.
,
40
(
25
), pp.
6937
6955
. 10.1016/S0020-7683(03)00346-9
30.
Peyre
,
G.
,
2015
, “
FE2 Method and Hyperreduction: Towards Intensive Computations at the Micro Scale
,”
Ph.D thesis
,
Ecole Nationale Supérieure des Mines de Paris
.
You do not currently have access to this content.