Abstract

Similar to mechanical forces that can induce profound biological effects, magnetic fields can have a broad range of implications to biological systems, from magnetoreception that allows an organism to detect a magnetic field to perceive direction, altitude, or location, to the use of heating induced by magnetic field for altering neuron activity. This review focuses on the application of magnetic forces generated by magnetic iron oxide nanoparticles (MIONs), which can also provide imaging contrast and mechanical/thermal energy in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. The magnetic properties of MIONs offer unique opportunities for enabling control of biological processes under different magnetic fields. Here, we describe the approaches of utilizing the forces generated by MIONs under an applied magnetic field to control biological processes and functions, including the targeting of drug molecules to a specific tissue, increasing the vessel permeability for improving drug delivery, and activating a particular viral vector for spatial control of genome editing in vivo. The opportunities of using nanomagnets for a broad range of biomedical applications are briefly discussed.

References

1.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
,
2002
,
Molecular Biology of the Cell
,
Garland Science
,
New York
.
2.
Bao
,
G.
, and
Suresh
,
S.
,
2003
, “
Cell and Molecular Mechanics of Biological Materials
,”
Nat. Mater.
,
2
(
11
), pp.
715
725
. 10.1038/nmat1001
3.
Cohen
,
N.
,
Deshpande
,
V. S.
,
Holmes
,
J. W.
, and
McMeeking
,
R. M.
,
2019
, “
A Microscopically Motivated Model for the Remodeling of Cardiomyocytes
,”
Biomech. Model Mechanobiol.
,
18
(
4
), pp.
1233
1245
. 10.1007/s10237-019-01141-5
4.
Ronan
,
W.
,
McMeeking
,
R. M.
,
Chen
,
C. S.
,
McGarry
,
J. P.
, and
Deshpande
,
V. S.
,
2015
, “
Cooperative Contractility: The Role of Stress Fibres in the Regulation of Cell-Cell Junctions
,”
J. Biomech.
,
48
(
3
), pp.
520
528
. 10.1016/j.jbiomech.2014.11.025
5.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
. 10.1016/j.cell.2006.06.044
6.
Ronan
,
W.
,
Pathak
,
A.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
McGarry
,
J. P.
,
2013
, “
Simulation of the Mechanical Response of Cells on Micropost Substrates
,”
J. Biomech. Eng.
,
135
(
10
), p.
101012
. 10.1115/1.4025114
7.
Pathak
,
A.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2008
, “
The Simulation of Stress Fibre and Focal Adhesion Development in Cells on Patterned Substrates
,”
J. R. Soc. Interface
,
5
(
22
), pp.
507
524
. 10.1098/rsif.2007.1182
8.
Valentinuzzi
,
M. E.
,
2004
, “
Magnetobiology: A Historical View
,”
IEEE Eng. Med. Biol. Mag.
,
23
(
3
), pp.
85
94
. 10.1109/MEMB.2004.1317987
9.
Wiltschko
,
W.
, and
Wiltschko
,
R.
,
2005
, “
Magnetic Orientation and Magnetoreception in Birds and Other Animals
,”
J. Comp. Physiol. A Neuroethol Sens Neural Behav. Physiol.
,
191
(
8
), pp.
675
693
. 10.1007/s00359-005-0627-7
10.
Mouritsen
,
H.
,
2018
, “
Long-Distance Navigation and Magnetoreception in Migratory Animals
,”
Nature
,
558
(
7708
), pp.
50
59
. 10.1038/s41586-018-0176-1
11.
Buchachenko
,
A.
,
2016
, “
Why Magnetic and Electromagnetic Effects in Biology Are Irreproducible and Contradictory?
,”
Bioelectromagnetics
,
37
(
1
), pp.
1
13
. 10.1002/bem.21947
12.
Bao
,
G.
,
Mitragotri
,
S.
, and
Tong
,
S.
,
2013
, “
Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging
,”
Annu. Rev. Biomed. Eng.
,
15
(
1
), pp.
253
282
. 10.1146/annurev-bioeng-071812-152409
13.
Tong
,
S.
,
Zhu
,
H.
, and
Bao
,
G.
,
2019
, “
Magnetic Iron Oxide Nanoparticles for Disease Detection and Therapy
,”
Mater. Today (Kidlington)
,
31
, pp.
86
99
. 10.1016/j.mattod.2019.06.003
14.
Demortiere
,
A.
,
Panissod
,
P.
,
Pichon
,
B. P.
,
Pourroy
,
G.
,
Guillon
,
D.
,
Donnio
,
B.
, and
Begin-Colin
,
S.
,
2011
, “
Size-Dependent Properties of Magnetic Iron Oxide Nanocrystals
,”
Nanoscale
,
3
(
1
), pp.
225
232
. 10.1039/C0NR00521E
15.
Jun
,
Y. W.
,
Huh
,
Y. M.
,
Choi
,
J. S.
,
Lee
,
J. H.
,
Song
,
H. T.
,
Kim
,
S.
,
Yoon
,
S.
,
Kim
,
K. S.
,
Shin
,
J. S.
,
Suh
,
J. S.
, and
Cheon
,
J.
,
2005
, “
Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging
,”
J. Am. Chem. Soc.
,
127
(
16
), pp.
5732
5733
. 10.1021/ja0422155
16.
Yanes
,
R.
,
Chubykalo-Fesenko
,
O.
,
Kachkachi
,
H.
,
Garanin
,
D. A.
,
Evans
,
R.
, and
Chantrell
,
R. W.
,
2007
, “
Effective Anisotropies and Energy Barriers of Magnetic Nanoparticles With Neel Surface Anisotropy
,”
Phys. Rev. B
,
76
(
6
), p.
064416
. 10.1103/PhysRevB.76.064416
17.
Tong
,
S.
,
Quinto
,
C. A.
,
Zhang
,
L.
,
Mohindra
,
P.
, and
Bao
,
G.
,
2017
, “
Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles
,”
ACS Nano
,
11
(
7
), pp.
6808
6816
. 10.1021/acsnano.7b01762
18.
Sun
,
S.
,
Zeng
,
H.
,
Robinson
,
D. B.
,
Raoux
,
S.
,
Rice
,
P. M.
,
Wang
,
S. X.
, and
Li
,
G.
,
2004
, “
Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles
,”
J. Am. Chem. Soc.
,
126
(
1
), pp.
273
279
. 10.1021/ja0380852
19.
Zhao
,
Z.
,
Zhou
,
Z.
,
Bao
,
J.
,
Wang
,
Z.
,
Hu
,
J.
,
Chi
,
X.
,
Ni
,
K.
,
Wang
,
R.
,
Chen
,
X.
,
Chen
,
Z.
, and
Gao
,
J.
,
2013
, “
Octapod Iron Oxide Nanoparticles as High-Performance T(2) Contrast Agents for Magnetic Resonance Imaging
,”
Nat. Commun.
,
4
(
1
), p.
2266
. 10.1038/ncomms3266
20.
Lee
,
J. H.
,
Jang
,
J. T.
,
Choi
,
J. S.
,
Moon
,
S. H.
,
Noh
,
S. H.
,
Kim
,
J. W.
,
Kim
,
J. G.
,
Kim
,
I. S.
,
Park
,
K. I.
, and
Cheon
,
J.
,
2011
, “
Exchange-Coupled Magnetic Nanoparticles for Efficient Heat Induction
,”
Nat. Nanotechnol.
,
6
(
7
), pp.
418
422
. 10.1038/nnano.2011.95
21.
Usov
,
N. A.
,
Gudoshnikov
,
S. A.
,
Serebryakova
,
O. N.
,
Fdez-Gubieda
,
M. L.
,
Muela
,
A.
, and
Barandiaran
,
J. M.
,
2013
, “
Properties of Dense Assemblies of Magnetic Nanoparticles Promising for Application in Biomedicine
,”
J. Supercond Nov. Magn.
,
26
(
4
), pp.
1079
1083
. 10.1007/s10948-012-1974-6
22.
Furlani
,
E. P.
, and
Ng
,
K. C.
,
2008
, “
Nanoscale Magnetic Biotransport With Application to Magnetofection
,”
Phys. Rev. E
,
77
(
6 Pt 1
), p.
061914
. 10.1103/PhysRevE.77.061914
23.
Landazuri
,
N.
,
Tong
,
S.
,
Suo
,
J.
,
Joseph
,
G.
,
Weiss
,
D.
,
Sutcliffe
,
D. J.
,
Giddens
,
D. P.
,
Bao
,
G.
, and
Taylor
,
W. R.
,
2013
, “
Magnetic Targeting of Human Mesenchymal Stem Cells With Internalized Superparamagnetic Iron Oxide Nanoparticles
,”
Small
,
9
(
23
), pp.
4017
4026
. 10.1002/smll.201300570
24.
Muthana
,
M.
,
Kennerley
,
A. J.
,
Hughes
,
R.
,
Fagnano
,
E.
,
Richardson
,
J.
,
Paul
,
M.
,
Murdoch
,
C.
,
Wright
,
F.
,
Payne
,
C.
,
Lythgoe
,
M. F.
,
Farrow
,
N.
,
Dobson
,
J.
,
Conner
,
J.
,
Wild
,
J. M.
, and
Lewis
,
C.
,
2015
, “
Directing Cell Therapy to Anatomic Target Sites In Vivo With Magnetic Resonance Targeting
,”
Nat. Commun.
,
6
(
1
), p.
8009
. 10.1038/ncomms9009
25.
Etoc
,
F.
,
Vicario
,
C.
,
Lisse
,
D.
,
Siaugue
,
J. M.
,
Piehler
,
J.
,
Coppey
,
M.
, and
Dahan
,
M.
,
2015
, “
Magnetogenetic Control of Protein Gradients Inside Living Cells With High Spatial and Temporal Resolution
,”
Nano Lett.
,
15
(
5
), pp.
3487
3494
. 10.1021/acs.nanolett.5b00851
26.
Dobson
,
J.
,
2008
, “
Remote Control of Cellular Behaviour With Magnetic Nanoparticles
,”
Nat. Nanotechnol.
,
3
(
3
), pp.
139
143
. 10.1038/nnano.2008.39
27.
Qiu
,
Y.
,
Tong
,
S.
,
Zhang
,
L.
,
Sakurai
,
Y.
,
Myers
,
D. R.
,
Hong
,
L.
,
Lam
,
W. A.
, and
Bao
,
G.
,
2017
, “
Magnetic Forces Enable Controlled Drug Delivery by Disrupting Endothelial Cell-Cell Junctions
,”
Nat. Commun.
,
8
(
1
), p.
15594
. 10.1038/ncomms15594
28.
Hu
,
B.
,
Dobson
,
J.
, and
El Haj
,
A. J.
,
2014
, “
Control of Smooth Muscle Alpha-Actin (SMA) Up-Regulation in HBMSCs Using Remote Magnetic Particle Mechano-Activation
,”
Nanomed-Nanotechnol
,
10
(
1
), pp.
45
55
. 10.1016/j.nano.2013.06.014
29.
Mannix
,
R. J.
,
Kumar
,
S.
,
Cassiola
,
F.
,
Montoya-Zavala
,
M.
,
Feinstein
,
E.
,
Prentiss
,
M.
, and
Ingber
,
D. E.
,
2008
, “
Nanomagnetic Actuation of Receptor-Mediated Signal Transduction
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
36
40
. 10.1038/nnano.2007.418
30.
Du
,
V.
,
Luciani
,
N.
,
Richard
,
S.
,
Mary
,
G.
,
Gay
,
C.
,
Mazuel
,
F.
,
Reffay
,
M.
,
Menasche
,
P.
,
Agbulut
,
O.
, and
Wilhelm
,
C.
,
2017
, “
A 3D Magnetic Tissue Stretcher for Remote Mechanical Control of Embryonic Stem Cell Differentiation
,”
Nat. Commun.
,
8
(
1
), p.
400
. 10.1038/s41467-017-00543-2
31.
Weissleder
,
R.
,
Elizondo
,
G.
,
Wittenberg
,
J.
,
Rabito
,
C. A.
,
Bengele
,
H. H.
, and
Josephson
,
L.
,
1990
, “
Ultrasmall Superparamagnetic Iron Oxide: Characterization of a New Class of Contrast Agents for MR Imaging
,”
Radiology
,
175
(
2
), pp.
489
493
. 10.1148/radiology.175.2.2326474
32.
Lee
,
J. H.
,
Huh
,
Y. M.
,
Jun
,
Y. W.
,
Seo
,
J. W.
,
Jang
,
J. T.
,
Song
,
H. T.
,
Kim
,
S.
,
Cho
,
E. J.
,
Yoon
,
H. G.
,
Suh
,
J. S.
, and
Cheon
,
J.
,
2007
, “
Artificially Engineered Magnetic Nanoparticles for Ultra-Sensitive Molecular Imaging
,”
Nat. Med.
,
13
(
1
), pp.
95
99
. 10.1038/nm1467
33.
Lewin
,
M.
,
Carlesso
,
N.
,
Tung
,
C. H.
,
Tang
,
X. W.
,
Cory
,
D.
,
Scadden
,
D. T.
, and
Weissleder
,
R.
,
2000
, “
Tat Peptide-Derivatized Magnetic Nanoparticles Allow in Vivo Tracking and Recovery of Progenitor Cells
,”
Nat. Biotechnol.
,
18
(
4
), pp.
410
414
. 10.1038/74464
34.
Kircher
,
M. F.
,
Mahmood
,
U.
,
King
,
R. S.
,
Weissleder
,
R.
, and
Josephson
,
L.
,
2003
, “
A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation
,”
Cancer Res.
,
63
(
23
), pp.
8122
8125
.
35.
Stanley
,
S. A.
,
Gagner
,
J. E.
,
Damanpour
,
S.
,
Yoshida
,
M.
,
Dordick
,
J. S.
, and
Friedman
,
J. M.
,
2012
, “
Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice
,”
Science
,
336
(
6081
), pp.
604
608
. 10.1126/science.1216753
36.
Manuchehrabadi
,
N.
,
Gao
,
Z.
,
Zhang
,
J.
,
Ring
,
H. L.
,
Shao
,
Q.
,
Liu
,
F.
,
McDermott
,
M.
,
Fok
,
A.
,
Rabin
,
Y.
,
Brockbank
,
K. G.
,
Garwood
,
M.
,
Haynes
,
C. L.
, and
Bischof
,
J. C.
,
2017
, “
Improved Tissue Cryopreservation Using Inductive Heating of Magnetic Nanoparticles
,”
Sci. Transl. Med.
,
9
(
379
), p.
eaah4586
. 10.1126/scitranslmed.aah4586
37.
Maier-Hauff
,
K.
,
Ulrich
,
F.
,
Nestler
,
D.
,
Niehoff
,
H.
,
Wust
,
P.
,
Thiesen
,
B.
,
Orawa
,
H.
,
Budach
,
V.
, and
Jordan
,
A.
,
2011
, “
Efficacy and Safety of Intratumoral Thermotherapy Using Magnetic Iron-Oxide Nanoparticles Combined With External Beam Radiotherapy on Patients With Recurrent Glioblastoma Multiforme
,”
J. Neurooncol.
,
103
(
2
), pp.
317
324
. 10.1007/s11060-010-0389-0
38.
Huang
,
H.
,
Delikanli
,
S.
,
Zeng
,
H.
,
Ferkey
,
D. M.
, and
Pralle
,
A.
,
2010
, “
Remote Control of Ion Channels and Neurons Through Magnetic-Field Heating of Nanoparticles
,”
Nat. Nanotechnol.
,
5
(
8
), pp.
602
606
. 10.1038/nnano.2010.125
39.
Leibiger
,
I. B.
, and
Berggren
,
P. O.
,
2015
, “
Regulation of Glucose Homeostasis Using Radiogenetics and Magnetogenetics in Mice
,”
Nat. Med.
,
21
(
1
), pp.
14
16
. 10.1038/nm.3782
40.
Moise
,
S.
,
Byrne
,
J. M.
,
El Haj
,
A. J.
, and
Telling
,
N. D.
,
2018
, “
The Potential of Magnetic Hyperthermia for Triggering the Differentiation of Cancer Cells
,”
Nanoscale
,
10
(
44
), pp.
20519
20525
. 10.1039/C8NR05946B
41.
Tong
,
S.
,
Hou
,
S.
,
Ren
,
B.
,
Zheng
,
Z.
, and
Bao
,
G.
,
2011
, “
Self-Assembly of Phospholipid-PEG Coating on Nanoparticles Through Dual Solvent Exchange
,”
Nano Lett
,
11
(
9
), pp.
3720
3726
. 10.1021/nl201978c
42.
Tong
,
S.
,
Hou
,
S.
,
Zheng
,
Z.
,
Zhou
,
J.
, and
Bao
,
G.
,
2010
, “
Coating Optimization of Superparamagnetic Iron Oxide Nanoparticles for High T2 Relaxivity
,”
Nano Lett
,
10
(
11
), pp.
4607
4613
. 10.1021/nl102623x
43.
Guardia
,
P.
,
Labarta
,
A.
, and
Batlle
,
X.
,
2011
, “
Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles
,”
J. Phys. Chem. C
,
115
(
2
), pp.
390
396
. 10.1021/jp1084982
44.
Park
,
J.
,
An
,
K.
,
Hwang
,
Y.
,
Park
,
J. G.
,
Noh
,
H. J.
,
Kim
,
J. Y.
,
Park
,
J. H.
,
Hwang
,
N. M.
, and
Hyeon
,
T.
,
2004
, “
Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals
,”
Nat. Mater
,
3
(
12
), pp.
891
895
. 10.1038/nmat1251
45.
Park
,
J.
,
Lee
,
E.
,
Hwang
,
N. M.
,
Kang
,
M.
,
Kim
,
S. C.
,
Hwang
,
Y.
,
Park
,
J. G.
,
Noh
,
H. J.
,
Kim
,
J. Y.
,
Park
,
J. H.
, and
Hyeon
,
T.
,
2005
, “
One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles
,”
Angew Chem. Int. Ed. Engl.
,
44
(
19
), pp.
2873
2877
. 10.1002/anie.200461665
46.
Kim
,
D.
,
Lee
,
N.
,
Park
,
M.
,
Kim
,
B. H.
,
An
,
K.
, and
Hyeon
,
T.
,
2009
, “
Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes
,”
J. Am. Chem. Soc.
,
131
(
2
), pp.
454
455
. 10.1021/ja8086906
47.
Qiao
,
L.
,
Fu
,
Z.
,
Li
,
J.
,
Ghosen
,
J.
,
Zeng
,
M.
,
Stebbins
,
J.
,
Prasad
,
P. N.
, and
Swihart
,
M. T.
,
2017
, “
Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (Fe3O4) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities
,”
ACS Nano
,
11
(
6
), pp.
6370
6381
. 10.1021/acsnano.7b02752
48.
Montet
,
X.
,
Funovics
,
M.
,
Montet-Abou
,
K.
,
Weissleder
,
R.
, and
Josephson
,
L.
,
2006
, “
Multivalent Effects of RGD Peptides Obtained by Nanoparticle Display
,”
J. Med. Chem.
,
49
(
20
), pp.
6087
6093
. 10.1021/jm060515m
49.
Kim
,
J.
,
Kim
,
H. S.
,
Lee
,
N.
,
Kim
,
T.
,
Kim
,
H.
,
Yu
,
T.
,
Song
,
I. C.
,
Moon
,
W. K.
, and
Hyeon
,
T.
,
2008
, “
Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery
,”
Angew. Chem. Int. Ed. Engl.
,
47
(
44
), pp.
8438
8441
. 10.1002/anie.200802469
50.
Kim
,
Y.
,
Lee Chung
,
B.
,
Ma
,
M.
,
Mulder
,
W. J.
,
Fayad
,
Z. A.
,
Farokhzad
,
O. C.
, and
Langer
,
R.
,
2012
, “
Mass Production and Size Control of Lipid-Polymer Hybrid Nanoparticles Through Controlled Microvortices
,”
Nano. Lett.
,
12
(
7
), pp.
3587
3591
. 10.1021/nl301253v
51.
Xie
,
J.
,
Chen
,
K.
,
Huang
,
J.
,
Lee
,
S.
,
Wang
,
J. H.
,
Gao
,
J.
,
Li
,
X. G.
, and
Chen
,
X. Y.
,
2010
, “
PET/NIRF/MRI Triple Functional Iron Oxide Nanoparticles
,”
Biomaterials
,
31
(
11
), pp.
3016
3022
. 10.1016/j.biomaterials.2010.01.010
52.
Herbst
,
R. S.
,
Baas
,
P.
,
Kim
,
D. W.
,
Felip
,
E.
,
Perez-Gracia
,
J. L.
,
Han
,
J. Y.
,
Molina
,
J.
,
Kim
,
J. H.
,
Arvis
,
C. D.
,
Ahn
,
M. J.
,
Majem
,
M.
,
Fidler
,
M. J.
,
de Castro
,
G.
, Jr.
,
Garrido
,
M.
,
Lubiniecki
,
G. M.
,
Shentu
,
Y.
,
Im
,
E.
,
Dolled-Filhart
,
M.
, and
Garon
,
E. B.
,
2016
, “
Pembrolizumab Versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial
,”
Lancet
,
387
(
10027
), pp.
1540
1550
. 10.1016/S0140-6736(15)01281-7
53.
Zhang
,
L.
,
Tong
,
S.
,
Zhang
,
Q.
, and
Bao
,
G.
,
2020
, “
Lipid-Encapsulated Fe3O4 Nanoparticles for Multimodal Magnetic Resonance/Fluorescence Imaging
,”
ACS Appl. Nanomater.
,
3
(
7
), pp.
6785
6797
. 10.1021/acsanm.0c01193
54.
Widder
,
K. J.
,
Senyel
,
A. E.
, and
Scarpelli
,
G. D.
,
1978
, “
Magnetic Microspheres: A Model System of Site Specific Drug Delivery In Vivo
,”
Proc. Soc. Exp. Biol. Med.
,
158
(
2
), pp.
141
146
. 10.3181/00379727-158-40158
55.
Ranney
,
D. F.
,
1985
, “
Targeted Modulation of Acute Inflammation
,”
Science
,
227
(
4683
), pp.
182
184
. 10.1126/science.3966151
56.
Widder
,
K. J.
,
Morris
,
R. M.
,
Poore
,
G.
,
Howard
,
D. P.
, Jr.
, and
Senyei
,
A. E.
,
1981
, “
Tumor Remission in Yoshida Sarcoma-Bearing rts by Selective Targeting of Magnetic Albumin Microspheres Containing Doxorubicin
,”
Proc. Natl. Acad. Sci. USA
,
78
(
1
), pp.
579
581
. 10.1073/pnas.78.1.579
57.
Alexiou
,
C.
,
Arnold
,
W.
,
Klein
,
R. J.
,
Parak
,
F. G.
,
Hulin
,
P.
,
Bergemann
,
C.
,
Erhardt
,
W.
,
Wagenpfeil
,
S.
, and
Lubbe
,
A. S.
,
2000
, “
Locoregional Cancer Treatment With Magnetic Drug Targeting
,”
Cancer Res.
,
60
(
23
), pp.
6641
6648
.
58.
Furlani
,
E. P.
, and
Ng
,
K. C.
,
2006
, “
Analytical Model of Magnetic Nanoparticle Transport and Capture in the Microvasculature
,”
Phys. Rev. E
,
73
(
6 Pt 1
), p.
061919
. 10.1103/PhysRevE.73.061919
59.
Earnshaw
,
S.
,
1842
, “
On the Nature of the Molecular Forces Which Regulate the Constitution of the Luminiferous Ether
,”
Trans. Camb. Phil. Soc.
,
7
, pp.
97
112
.
60.
Faddis
,
M. N.
,
Blume
,
W.
,
Finney
,
J.
,
Hall
,
A.
,
Rauch
,
J.
,
Sell
,
J.
,
Bae
,
K. T.
,
Talcott
,
M.
, and
Lindsay
,
B.
,
2002
, “
Novel, Magnetically Guided Catheter for Endocardial Mapping and Radiofrequency Catheter Ablation
,”
Circulation
,
106
(
23
), pp.
2980
2985
. 10.1161/01.CIR.0000038704.84304.6F
61.
Heunis
,
C.
,
Sikorski
,
J.
, and
Misra
,
S.
,
2018
, “
Flexible Instruments for Endovascular Interventions: Improved Magnetic Steering, Actuation, and Image-Guided Surgical Instruments
,”
IEEE Rob. Automation Magazine
,
25
(
3
), pp.
71
82
. 10.1109/MRA.2017.2787784
62.
Nacev
,
A.
,
Weinberg
,
I. N.
,
Stepanov
,
P. Y.
,
Kupfer
,
S.
,
Mair
,
L. O.
,
Urdaneta
,
M. G.
,
Shimoji
,
M.
,
Fricke
,
S. T.
, and
Shapiro
,
B.
,
2014
, “
Dynamic Inversion Enables External Magnets to Concentrate Ferromagnetic Rods to a Central Target
,”
Nano Lett.
,
15
(
1
), pp.
359
364
.
63.
Shapiro
,
B.
,
2009
, “
Towards Dynamic Control of Magnetic Fields to Focus Magnetic Carriers to Targets Deep Inside the Body
,”
J. Magn. Magn. Mater.
,
321
(
10
), pp.
1594
1599
. 10.1016/j.jmmm.2009.02.094
64.
Lubbe
,
A. S.
,
Bergemann
,
C.
,
Huhnt
,
W.
,
Fricke
,
T.
,
Riess
,
H.
,
Brock
,
J. W.
, and
Huhn
,
D.
,
1996
, “
Preclinical Experiences With Magnetic Drug Targeting: Tolerance and Efficacy
,”
Cancer Res.
,
56
(
20
), pp.
4694
4701
.
65.
Alexiou
,
C.
,
Jurgons
,
R.
,
Schmid
,
R. J.
,
Bergemann
,
C.
,
Henke
,
J.
,
Erhardt
,
W.
,
Huenges
,
E.
, and
Parak
,
F.
,
2003
, “
Magnetic Drug Targeting–Biodistribution of the Magnetic Carrier and the Chemotherapeutic Agent Mitoxantrone After Locoregional Cancer Treatment
,”
J. Drug. Target
,
11
(
3
), pp.
139
149
. 10.3109/1061186031000150791
66.
Wilhelm
,
S.
,
Tavares
,
A. J.
,
Dai
,
Q.
,
Ohta
,
S.
,
Audet
,
J.
,
Dvorak
,
H. F.
, and
Chan
,
W. C. W.
,
2016
, “
Analysis of Nanoparticle Delivery to Tumours
,”
Nature Rev. Mater.
,
1
(
5
), p.
16014
. 10.1038/natrevmats.2016.14
67.
Komarova
,
Y.
, and
Malik
,
A. B.
,
2010
, “
Regulation of Endothelial Permeability via Paracellular and Transcellular Transport Pathways
,”
Annu. Rev. Physiol.
,
72
(
1
), pp.
463
493
. 10.1146/annurev-physiol-021909-135833
68.
Shen
,
H.
,
Tong
,
S.
,
Bao
,
G.
, and
Wang
,
B.
,
2014
, “
Structural Responses of Cells to Intracellular Magnetic Force Induced by Superparamagnetic Iron Oxide Nanoparticles
,”
Phys. Chem. Chem. Phys.: PCCP
,
16
(
5
), pp.
1914
1920
. 10.1039/C3CP51435H
69.
Millan
,
J.
,
Cain
,
R. J.
,
Reglero-Real
,
N.
,
Bigarella
,
C.
,
Marcos-Ramiro
,
B.
,
Fernandez-Martin
,
L.
,
Correas
,
I.
, and
Ridley
,
A. J.
,
2010
, “
Adherens Junctions Connect Stress Fibres Between Adjacent Endothelial Cells
,”
BMC Biol.
,
8
, p.
11
. 10.1186/1741-7007-8-11
70.
Dejana
,
E.
,
2004
, “
Endothelial Cell-Cell Junctions: Happy Together
,”
Nat.Rev. Mol. Cell Biol.
,
5
(
4
), pp.
261
270
. 10.1038/nrm1357
71.
Bazzoni
,
G.
, and
Dejana
,
E.
,
2001
, “
Pores in the Sieve and Channels in the Wall: Control of Paracellular Permeability by Junctional Proteins in Endothelial Cells
,”
Microcirculation
,
8
(
3
), pp.
143
152
. 10.1111/j.1549-8719.2001.tb00165.x
72.
Waschke
,
J.
,
Curry
,
F. E.
,
Adamson
,
R. H.
, and
Drenckhahn
,
D.
,
2005
, “
Regulation of Actin Dynamics Is Critical for Endothelial Barrier Functions
,”
Am. J. Physiol. Heart C
,
288
(
3
), pp.
H1296
H1305
. 10.1152/ajpheart.00687.2004
73.
Sevick-Muraca
,
E. M.
,
2012
, “
Translation of Near-Infrared Fluorescence Imaging Technologies: Emerging Clinical Applications
,”
Annu. Rev. Med.
,
63
(
1
), pp.
217
231
. 10.1146/annurev-med-070910-083323
74.
Sander
,
J. D.
, and
Joung
,
J. K.
,
2014
, “
CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes
,”
Nat. Biotechnol.
,
32
(
4
), pp.
347
355
. 10.1038/nbt.2842
75.
Cox
,
D. B.
,
Platt
,
R. J.
, and
Zhang
,
F.
,
2015
, “
Therapeutic Genome Editing: Prospects and Challenges
,”
Nat. Med.
,
21
(
2
), pp.
121
131
. 10.1038/nm.3793
76.
Jinek
,
M.
,
Chylinski
,
K.
,
Fonfara
,
I.
,
Hauer
,
M.
,
Doudna
,
J. A.
, and
Charpentier
,
E.
,
2012
, “
A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity
,”
Science
,
337
(
6096
), pp.
816
821
. 10.1126/science.1225829
77.
Doudna
,
J. A.
, and
Charpentier
,
E.
,
2014
, “
Genome Editing. The New Frontier of Genome Engineering With CRISPR-Cas9
,”
Science
,
346
(
6213
), p.
1258096
. 10.1126/science.1258096
78.
Nelson
,
C. E.
,
Hakim
,
C. H.
,
Ousterout
,
D. G.
,
Thakore
,
P. I.
,
Moreb
,
E. A.
,
Castellanos Rivera
,
R. M.
,
Madhavan
,
S.
,
Pan
,
X.
,
Ran
,
F. A.
,
Yan
,
W. X.
,
Asokan
,
A.
,
Zhang
,
F.
,
Duan
,
D.
, and
Gersbach
,
C. A.
,
2016
, “
In Vivo Genome Editing Improves Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy
,”
Science
,
351
(
6271
), pp.
403
407
. 10.1126/science.aad5143
79.
Wang
,
H. X.
,
Li
,
M.
,
Lee
,
C. M.
,
Chakraborty
,
S.
,
Kim
,
H. W.
,
Bao
,
G.
, and
Leong
,
K. W.
,
2017
, “
CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery
,”
Chem. Rev.
,
117
(
15
), pp.
9874
9906
. 10.1021/acs.chemrev.6b00799
80.
Li
,
A.
,
Tanner
,
M. R.
,
Lee
,
C. M.
,
Hurley
,
A. E.
,
De Giorgi
,
M.
,
Jarrett
,
K. E.
,
Davis
,
T. H.
,
Doerfler
,
A. M.
,
Bao
,
G.
,
Beeton
,
C.
, and
Lagor
,
W. R.
,
2020
, “
AAV-CRISPR Gene Editing Is Negated by Pre-Existing Immunity to Cas9
,”
Mol. Ther.
,
28
(
6
), pp.
1432
1441
. 10.1016/j.ymthe.2020.04.017
81.
Wang
,
Y.
,
Hu
,
J. K.
,
Krol
,
A.
,
Li
,
Y. P.
,
Li
,
C. Y.
, and
Yuan
,
F.
,
2003
, “
Systemic Dissemination of Viral Vectors During Intratumoral Injection
,”
Mol. Cancer Ther.
,
2
(
11
), pp.
1233
1242
.
82.
Zhu
,
H.
,
Zhang
,
L.
,
Tong
,
S.
,
Lee
,
C. M.
,
Deshmukh
,
H.
, and
Bao
,
G.
,
2019
, “
Spatial Control of in Vivo CRISPR-Cas9 Genome Editing via Nanomagnets
,”
Nat. Biomed. Eng.
,
3
(
2
), pp.
126
136
. 10.1038/s41551-018-0318-7
83.
Mansouri
,
M.
,
Bellon-Echeverria
,
I.
,
Rizk
,
A.
,
Ehsaei
,
Z.
,
Cianciolo Cosentino
,
C.
,
Silva
,
C. S.
,
Xie
,
Y.
,
Boyce
,
F. M.
,
Davis
,
M. W.
,
Neuhauss
,
S. C.
,
Taylor
,
V.
,
Ballmer-Hofer
,
K.
,
Berger
,
I.
, and
Berger
,
P.
,
2016
, “
Highly Efficient Baculovirus-Mediated Multigene Delivery in Primary Cells
,”
Nat. Commun.
,
7
(
1
), p.
11529
. 10.1038/ncomms11529
84.
Chen
,
C. Y.
,
Lin
,
C. Y.
,
Chen
,
G. Y.
, and
Hu
,
Y. C.
,
2011
, “
Baculovirus as a Gene Delivery Vector: Recent Understandings of Molecular Alterations in Transduced Cells and Latest Applications
,”
Biotechnol. Adv.
,
29
(
6
), pp.
618
631
. 10.1016/j.biotechadv.2011.04.004
You do not currently have access to this content.