Abstract
In this technical brief, a simple concise derivation of the Gibbs–Appell equations for the dynamics of a constrained rigid body is presented.
Issue Section:
Technical Brief
References
1.
Marghitu
, D. B.
, and Cojocaru
, D.
, 2016
, Advances in Robot Design and Intelligent Control
, Springer International Publishing
, Cham, Switzerland
, pp. 317
–325
.2.
Mata
, V.
, Provenzano
, S.
, and Cuadrado
, J. L.
, 2002
, “Inverse Dynamic Problem in Robots Using Gibbs-Appell Equations
,” Robotica
, 20
(1
), pp. 59
–67
. 3.
Baruh
, H.
, 1999
, Analytical Dynamics
, McGraw-Hill
, Boston, MA
.4.
Desloge
, E. A.
, 1988
, “The Gibbs–Appell Equations of Motion
,” Am. J. Phys.
, 56
(9
), pp. 841
–846
. 5.
Greenwood
, D. T.
, 2003
, Advanced Dynamics
, Cambridge University Press
, Cambridge, MA
. 6.
Pars
, L. A.
, 1979
, A Treatise on Analytical Dynamics
, Ox Bow Press
, Woodbridge, CT
.7.
Udwadia
, F. E.
, and Kalaba
, R. E.
, 1998
, “The Explicit Gibbs-Appell Equation and Generalized Inverse Forms
,” Q. Appl. Math.
, 56
(2
), pp. 277
–288
. 8.
O’Reilly
, O. M.
, and Srinivasa
, A. R.
, 2014
, “A Simple Treatment of Constraint Forces and Constraint Moments in the Dynamics of Rigid Bodies
,” ASME Appl. Mech. Rev.
, 67
(1
), p. 014801
. 9.
Kane
, T. R.
, and Levinson
, D. A.
, 1985
, Dynamics: Theory and Applications
, McGraw-Hill
, New York
.10.
O’Reilly
, O. M.
, 2020
, Intermediate Dynamics for Engineers: Newton-Euler and Lagrangian Mechanics
, 2nd ed., Cambridge University Press
, Cambridge, MA
. 11.
O’Reilly
, O. M.
, 2007
, “The Dual Euler Basis: Constraints, Potentials, and Lagrange’s Equations in Rigid Body Dynamics
,” ASME J. Appl. Mech.
, 74
(2
), pp. 256
–258
. Copyright © 2021 by ASME
You do not currently have access to this content.