Abstract

In this technical brief, a simple concise derivation of the Gibbs–Appell equations for the dynamics of a constrained rigid body is presented.

References

1.
Marghitu
,
D. B.
, and
Cojocaru
,
D.
,
2016
,
Advances in Robot Design and Intelligent Control
,
Springer International Publishing
,
Cham, Switzerland
, pp.
317
325
.
2.
Mata
,
V.
,
Provenzano
,
S.
, and
Cuadrado
,
J. L.
,
2002
, “
Inverse Dynamic Problem in Robots Using Gibbs-Appell Equations
,”
Robotica
,
20
(
1
), pp.
59
67
.
3.
Baruh
,
H.
,
1999
,
Analytical Dynamics
,
McGraw-Hill
,
Boston, MA
.
4.
Desloge
,
E. A.
,
1988
, “
The Gibbs–Appell Equations of Motion
,”
Am. J. Phys.
,
56
(
9
), pp.
841
846
.
5.
Greenwood
,
D. T.
,
2003
,
Advanced Dynamics
,
Cambridge University Press
,
Cambridge, MA
.
6.
Pars
,
L. A.
,
1979
,
A Treatise on Analytical Dynamics
,
Ox Bow Press
,
Woodbridge, CT
.
7.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1998
, “
The Explicit Gibbs-Appell Equation and Generalized Inverse Forms
,”
Q. Appl. Math.
,
56
(
2
), pp.
277
288
.
8.
O’Reilly
,
O. M.
, and
Srinivasa
,
A. R.
,
2014
, “
A Simple Treatment of Constraint Forces and Constraint Moments in the Dynamics of Rigid Bodies
,”
ASME Appl. Mech. Rev.
,
67
(
1
), p.
014801
.
9.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
10.
O’Reilly
,
O. M.
,
2020
,
Intermediate Dynamics for Engineers: Newton-Euler and Lagrangian Mechanics
, 2nd ed.,
Cambridge University Press
,
Cambridge, MA
.
11.
O’Reilly
,
O. M.
,
2007
, “
The Dual Euler Basis: Constraints, Potentials, and Lagrange’s Equations in Rigid Body Dynamics
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
256
258
.
You do not currently have access to this content.