Abstract

The low velocity impact (LVI)-induced damage of a highly anisotropic laminate [0/90/0/909]s has been studied experimentally and numerically. The purpose of the analyses of this laminate is that this stacking sequence resembles a sandwich composite panel, in the sense that the [0/90/0] outer layers serve as the “face sheet” while the inner 18 plies of 90 deg layers serve as the “core.” The LVI-induced damage pattern of this laminate is unique and referred to as the “kidney” shape. The “kidney” shape damage is caused by a strong interaction between matrix transverse cracking and delamination, hence is challenging to be computationally captured. The enhanced Schapery theory (EST) model has been improved with the capability to model material inelasticity, as well as a novel mixed-mode cohesive law, to tackle this problem. EST with inelasticity (EST-InELA) is shown to be able to predict load responses and damage morphology accurately and efficiently. The aim of this paper is to provide a challenging LVI case to examine and calibrate computational models.

References

1.
Lin
,
S.
,
Thorsson
,
S. I.
, and
Waas
,
A. M.
,
2020
, “
Predicting the Low Velocity Impact Damage of a Quasi-Isotropic Laminate Using EST
,”
Compos. Struct.
,
251
, p.
112530
. 10.1016/j.compstruct.2020.112530
2.
Davies
,
G.
, and
Olsson
,
R.
,
2004
, “
Impact on Composite Structures
,”
Aeronaut. J.
,
108
(
1089
), pp.
541
563
. 10.1017/S0001924000000385
3.
Abrate
,
S.
,
2005
,
Impact on Composite Structures
,
Cambridge University Press
,
Cambridge, UK
.
4.
McElroy
,
M.
,
2017
, “
Use of an Enriched Shell Finite Element to Simulate Delamination-Migration in a Composite Laminate
,”
Compos. Struct.
,
167
, pp.
88
95
. 10.1016/j.compstruct.2017.01.057
5.
Maimi
,
P.
,
Camanho
,
P. P.
,
Mayugo
,
J.
, and
Davila
,
C.
,
2007
, “
A Continuum Damage Model for Composite Laminates: Part I: Constitutive Model
,”
Mech. Mater.
,
39
(
10
), pp.
897
908
. 10.1016/j.mechmat.2007.03.005
6.
González
,
E. V.
,
Maimí
,
P.
,
Camanho
,
P. P.
,
Turon
,
A.
, and
Mayugo
,
J. A.
,
2012
, “
Simulation of Drop-Weight Impact and Compression After Impact Tests on Composite Laminates
,”
Compos. Struct.
,
94
(
11
), pp.
3364
3378
. 10.1016/j.compstruct.2012.05.015
7.
Lopes
,
C.
,
Sadaba
,
S.
,
Gonzalez
,
C.
,
Llorca
,
J.
, and
Camanho
,
P.
,
2016
, “
Physically-Sound Simulation of Low-Velocity Impact on Fiber Reinforced Laminates
,”
Int. J. Impact Eng.
,
92
, pp.
3
17
. 10.1016/j.ijimpeng.2015.05.014
8.
Lopes
,
C. S.
,
Camanho
,
P. P.
,
Gürdal
,
Z.
,
Maimí
,
P.
, and
González
,
E. V.
,
2009
, “
Low-Velocity Impact Damage on Dispersed Stacking Sequence Laminates. Part II: Numerical Simulations
,”
Compos. Sci. Technol.
,
69
(
7–8
), pp.
937
947
. 10.1016/j.compscitech.2009.02.015
9.
Donadon
,
M.
,
Iannucci
,
L.
,
Falzon
,
B. G.
,
Hodgkinson
,
J.
, and
de Almeida
,
S. F.
,
2008
, “
A Progressive Failure Model for Composite Laminates Subjected to Low Velocity Impact Damage
,”
Comput. Struct.
,
86
(
11–12
), pp.
1232
1252
. 10.1016/j.compstruc.2007.11.004
10.
Faggiani
,
A.
, and
Falzon
,
B.
,
2010
, “
Predicting Low-Velocity Impact Damage on a Stiffened Composite Panel
,”
Compos. Part A: Appl. Sci. Manuf.
,
41
(
6
), pp.
737
749
. 10.1016/j.compositesa.2010.02.005
11.
Liu
,
H.
,
Falzon
,
B. G.
, and
Tan
,
W.
,
2018
, “
Experimental and Numerical Studies on the Impact Response of Damage-Tolerant Hybrid Unidirectional/Woven Carbon-Fibre Reinforced Composite Laminates
,”
Compos. Part B: Eng.
,
136
, pp.
101
118
. 10.1016/j.compositesb.2017.10.016
12.
Soto
,
A.
,
González
,
E. V.
,
Maimí
,
P.
,
De La Escalera
,
F. M.
,
De Aja
,
J. S.
, and
Alvarez
,
E.
,
2018
, “
Low Velocity Impact and Compression After Impact Simulation of Thin Ply Laminates
,”
Compos. Part A: Appl. Sci. Manuf.
,
109
, pp.
413
427
. 10.1016/j.compositesa.2018.03.017
13.
González
,
E. V.
,
Maimí
,
P.
,
Martín-Santos
,
E.
,
Soto
,
A.
,
Cruz
,
P.
,
De La Escalera
,
F. M.
, and
de Aja
,
J. S.
,
2018
, “
Simulating Drop-Weight Impact and Compression After Impact Tests on Composite Laminates Using Conventional Shell Finite Elements
,”
Int. J. Solids Struct.
,
144
, pp.
230
247
. 10.1016/j.ijsolstr.2018.05.005
14.
Bouvet
,
C.
,
Rivallant
,
S.
, and
Barrau
,
J.-J.
,
2012
, “
Low Velocity Impact Modeling in Composite Laminates Capturing Permanent Indentation
,”
Compos. Sci. Technol.
,
72
(
16
), pp.
1977
1988
. 10.1016/j.compscitech.2012.08.019
15.
Rivallant
,
S.
,
Bouvet
,
C.
, and
Hongkarnjanakul
,
N.
,
2013
, “
Failure Analysis of CFRP Laminates Subjected to Compression After Impact: FE Simulation Using Discrete Interface Elements
,”
Compos. Part A: Appl. Sci. Manuf.
,
55
, pp.
83
93
. 10.1016/j.compositesa.2013.08.003
16.
McElroy
,
M. W.
,
Gutkin
,
R.
, and
Pankow
,
M.
,
2017
, “
Interaction of Delaminations and Matrix Cracks in a CFRP Plate, Part II: Simulation Using an Enriched Shell Finite Element Model
,”
Compos. Part A: Appl. Sci. Manuf.
,
103
, pp.
252
262
. 10.1016/j.compositesa.2017.10.006
17.
Pineda
,
E. J.
, and
Waas
,
A. M.
,
2013
, “
Numerical Implementation of a Multiple-ISV Thermodynamically-Based Work Potential Theory for Modeling Progressive Damage and Failure in Fiber-Reinforced Laminates
,”
Int. J. Fract.
,
182
(
1
), pp.
93
122
. 10.1007/s10704-013-9860-1
18.
Thorsson
,
S. I.
,
Waas
,
A. M.
, and
Rassaian
,
M.
,
2018
, “
Low-Velocity Impact Predictions of Composite Laminates Using a Continuum Shell Based Modeling Approach Part b: BVID Impact and Compression After Impact
,”
Int. J. Solids Struct.
,
155
, pp.
201
212
. 10.1016/j.ijsolstr.2018.07.018
19.
Thorsson
,
S. I.
,
Waas
,
A. M.
, and
Rassaian
,
M.
,
2018
, “
Low-Velocity Impact Predictions of Composite Laminates Using a Continuum Shell Based Modeling Approach Part a: Impact Study
,”
Int. J. Solids Struct.
,
155
, pp.
185
200
. 10.1016/j.ijsolstr.2018.07.020
20.
Lin
,
S.
, and
Waas
,
A. M.
,
2020
, “
Experimental and High-Fidelity Computational Investigations on the Low Velocity Impact Damage of Laminated Composite Materials
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, pp.
0724
0750
.
21.
Topac
,
O. T.
,
Gozluklu
,
B.
,
Gurses
,
E.
, and
Coker
,
D.
,
2017
, “
Experimental and Computational Study of the Damage Process in CFRP Composite Beams Under Low-Velocity Impact
,”
Compos. Part A: Appl. Sci. Manuf.
,
92
, pp.
167
182
. 10.1016/j.compositesa.2016.06.023
22.
Thorsson
,
S. I.
,
Xie
,
J.
,
Marek
,
J.
, and
Waas
,
A. M.
,
2016
, “
Matrix Crack Interacting With a Delamination in an Impacted Sandwich Composite Beam
,”
Eng. Fract. Mech.
,
163
, pp.
476
486
. 10.1016/j.engfracmech.2016.04.003
23.
Rots
,
J. G.
,
Nauta
,
P.
,
Kuster
,
G.
, and
Blaauwendraad
,
J.
,
1985
, “
Smeared Crack Approach and Fracture Localization in Concrete
,”
HERON
,
30
(
1
), p.
1985
.
24.
Heinrich
,
C.
, and
Waas
,
A.
,
2012
, “
Investigation of Progressive Damage and Fracture in Laminated Composites Using the Smeared Crack Approach
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA.
,
Honolulu, HI
,
Apr. 23–26
, pp.
1537
1556
.
25.
Lin
,
S.
,
Davidson
,
P.
,
Stieber
,
J.
, and
Waas
,
A.
,
2019
, “
Experimental and Numerical Investigation on the Three Point Bending Response of Highly Anisotropic Composite Beam
,”
Proceedings of the American Society for Composites—Thirty-Fourth Technical Conference
,
Atlanta, GA
,
Sept. 23–25
.
26.
Schapery
,
R.
,
1989
, “
A Method for Mechanical State Characterization of Inelastic Composite Laminates With Damage
,”
Proceedings of The 7th International Conference On Fracture (ICF7)
,
Houston, TX
,
Mar. 24
, pp.
2177
2189
.
27.
Joseph
,
A. P.
,
Davidson
,
P.
, and
Waas
,
A. M.
,
2018
, “
Open Hole and Filled Hole Progressive Damage and Failure Analysis of Composite Laminates With a Countersunk Hole
,”
Compos. Struct.
,
203
, pp.
523
538
. 10.1016/j.compstruct.2018.06.120
28.
A. D7136
,
2005
, “
Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced-Polymer Matrix Composites to a Drop-Weight Impact Event
,”
Book of Standards 15
.
29.
Yu
,
B.
,
Bradley
,
R.
,
Soutis
,
C.
,
Hogg
,
P.
, and
Withers
,
P.
,
2015
, “
2D and 3D Imaging of Fatigue Failure Mechanisms of 3d Woven Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
77
, pp.
37
49
. 10.1016/j.compositesa.2015.06.013
30.
Nixon-Pearson
,
O.
, and
Hallett
,
S.
,
2015
, “
An Experimental Investigation Into Quasi-Static and Fatigue Damage Development in Bolted-Hole Specimens
,”
Compos. Part B: Eng.
,
77
, pp.
462
473
. 10.1016/j.compositesb.2015.03.051
31.
Schapery
,
R. A.
,
1975
, “
A Theory of Crack Initiation and Growth in Viscoelastic Media
,”
Int. J. Fract.
,
11
(
1
), pp.
141
159
. 10.1007/BF00034721
32.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Matériaux et construction
,
16
(
3
), pp.
155
177
. 10.1007/BF02486267
33.
Nguyen
,
M. H.
, and
Waas
,
A. M.
,
2020
, “
A Novel Mode-Dependent and Probabilistic Semi-Discrete Damage Model for Progressive Failure Analysis of Composite Laminates—Part I: Meshing Strategy and Mixed-Mode Law
,”
Compos. Part C: Open Access
,
3
, p.
100073
. 10.1016/j.jcomc.2020.100073
34.
Joseph
,
A. P.
,
Waas
,
A. M.
,
Ji
,
W.
,
Pineda
,
E. J.
,
Liguore
,
S. L.
, and
Wanthal
,
S. P.
,
2015
, “
Progressive Damage and Failure Prediction of Open Hole Tension and Open Hole Compression Specimens
,”
56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 5–9
, pp.
466
484
.
35.
Song
,
S.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
,
Faruque
,
O.
, and
Xiao
,
X.
,
2010
, “
Effects of Matrix Microcracking on the Response of 2D Braided Textile Composites Subjected to Compression Loads
,”
J. Compos. Mater.
,
44
(
2
), pp.
221
240
. 10.1177/0021998309341345
36.
Puck
,
A.
, and
Schürmann
,
H.
,
2004
, “Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models,”
Failure Criteria in Fibre-Reinforced-Polymer Composites
,
M. J.
Hinton
,
A. S.
Kaddour
, and
P. D.
Soden
, eds.,
Elsevier
,
New York
, pp.
832
876
.
37.
Nguyen
,
N.
, and
Waas
,
A. M.
,
2016
, “
A Novel Mixed-Mode Cohesive Formulation for Crack Growth Analysis
,”
Compos. Struct.
,
156
, pp.
253
262
. 10.1016/j.compstruct.2015.11.015
38.
Lin
,
S.
,
Ranatunga
,
V.
, and
Waas
,
A. M.
,
2021
, “
A Comprehensive Experimental and Computational Study on LVI Induced Damage of Laminated Composites
,”
AIAA Scitech 2021 Forum
,
Online
,
Jan. 11–15
, pp.
1623
1654
.
39.
Dassault Systemes Simulia Corporation
,
2014
,
ABAQUS/Standard User’s Manual, Version 6.14
,
Dassault Systemes Simulia Corporation
,
Rhode Island, USA
.
40.
Nguyen
,
M. H.
,
Vijayachandran
,
A. A.
,
Davidson
,
P.
,
Call
,
D.
,
Lee
,
D.
, and
Waas
,
A. M.
,
2019
, “
Effect of Automated Fiber Placement (AFP) Manufacturing Signature on Mechanical Performance of Composite Structures
,”
Compos. Struct.
,
228
, p.
111335
. 10.1016/j.compstruct.2019.111335
41.
Waas
,
A. M.
,
Thorsson
,
S. I.
, and
Rassaian
,
M.
,
2018
, “
Prediction of Low-Velocity Face-on Impact Response and Compression After Impact (CAI) of Composite Laminates Using EST and Cohesive Modeling (DCZM)
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
1704
.
42.
Ebina
,
M.
,
Yoshimura
,
A.
,
Sakaue
,
K.
, and
Waas
,
A. M.
,
2018
, “
High Fidelity Simulation of Low Velocity Impact Behavior of CFRP Laminate
,”
Compos. Part A: Appl. Sci. Manuf.
,
113
, pp.
166
179
. 10.1016/j.compositesa.2018.07.022
You do not currently have access to this content.