Abstract

Regularized continuum damage models such as those based on an order parameter (phase field) have been extensively used to characterize brittle damage of compressible elastomers. However, the prescription of the surface integral and the degradation function for stiffness lacks a physical basis. In this article, we propose a continuum damage model that draws upon the postulate that a damaged material could be mathematically described as a Riemannian manifold. Working within this framework with a well-defined Riemannian metric designed to capture features of isotropic damage, we prescribe a scheme to prevent damage evolution under pure compression. The result is a substantively reduced stiffness degradation due to damage before the peak response and a faster convergence rate with the length scale parameter in comparison with a second-order phase field formulation that involves a quadratic degradation function. We also validate this model using results of tensile experiments on double notched plates.

References

1.
Miehe
,
C.
, and
Schänzel
,
L.-M.
,
2014
, “
Phase Field Modeling of Fracture in Rubbery Polymers. Part I: Finite Elasticity Coupled With Brittle Failure
,”
J. Mech. Phys. Solids.
,
65
, pp.
93
113
. 10.1016/j.jmps.2013.06.007
2.
Jirásek
,
M.
,
2004
, “
Non-local Damage Mechanics With Application to Concrete
,”
Rev. Franç. de génie civil
,
8
(
5–6
), pp.
683
707
. 10.1080/12795119.2004.9692625
3.
Goswami
,
S.
,
Anitescu
,
C.
, and
Rabczuk
,
T.
,
2020
, “
Adaptive Fourth-Order Phase Field Analysis for Brittle Fracture
,”
Comput. Methods. Appl. Mech. Eng.
,
361
, p.
112808
. 10.1016/j.cma.2019.112808
4.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods. Appl. Mech. Eng.
,
199
(
45–48
), pp.
2765
2778
. 10.1016/j.cma.2010.04.011
5.
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J.
, and
Landis
,
C. M.
,
2012
, “
A Phase-Field Description of Dynamic Brittle Fracture
,”
Comput. Methods. Appl. Mech. Eng.
,
217–220
, pp.
77
95
. 10.1016/j.cma.2012.01.008
6.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elasti.
,
91
(
1–3
), pp.
5
148
. 10.1007/s10659-007-9107-3
7.
Sargado
,
J. M.
,
Keilegavlen
,
E.
,
Berre
,
I.
, and
Nordbotten
,
J. M.
,
2018
, “
High-Accuracy Phase-field Models for Brittle Fracture Based on a New Family of Degradation Functions
,”
J. Mech. Phys. Solids.
,
111
, pp.
458
489
. 10.1016/j.jmps.2017.10.015
8.
Tanné
,
E.
,
Li
,
T.
,
Bourdin
,
B.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2018
, “
Crack Nucleation in Variational Phase-Field Models of Brittle Fracture
,”
J. Mech. Phys. Solids.
,
110
, pp.
80
99
. 10.1016/j.jmps.2017.09.006
9.
Borden
,
M. J.
,
Hughes
,
T. J.
,
Landis
,
C. M.
, and
Verhoosel
,
C. V.
,
2014
, “
A Higher-order Phase-field Model for Brittle Fracture: Formulation and Analysis Within the Isogeometric Analysis Framework
,”
Comput. Methods. Appl. Mech. Eng.
,
273
, pp.
100
118
. 10.1016/j.cma.2014.01.016
10.
Tang
,
S.
,
Zhang
,
G.
,
Guo
,
T. F.
,
Guo
,
X.
, and
Liu
,
W. K.
,
2019
, “
Phase Field Modeling of Fracture in Nonlinearly Elastic Solids Via Energy Decomposition
,”
Comput. Methods. Appl. Mech. Eng.
,
347
, pp.
477
494
. 10.1016/j.cma.2018.12.035
11.
Ye
,
J.-Y.
,
Yin
,
B.-B.
,
Zhang
,
L.-W.
, and
Reddy
,
J.
,
2020
, “
Large Strained Fracture of Nearly Incompressible Hyperelastic Materials: Enhanced Assumed Strain Methods and Energy Decomposition
,”
J. Mech. Phys. Solids.
,
139
, p.
103939
. 10.1016/j.jmps.2020.103939
12.
Borden
,
M. J.
,
Hughes
,
T. J.
,
Landis
,
C. M.
,
Anvari
,
A.
, and
Lee
,
I. J.
,
2016
, “
A Phase-Field Formulation for Fracture in Ductile Materials: Finite Deformation Balance Law Derivation, Plastic Degradation, and Stress Triaxiality Effects
,”
Comput. Methods. Appl. Mech. Eng.
,
312
, pp.
130
166
. 10.1016/j.cma.2016.09.005
13.
Miehe
,
C.
,
Göktepe
,
S.
, and
Lulei
,
F.
,
2004
, “
A Micro-Macro Approach to Rubber-Like Materials–Part I: the Non-Affine Micro-Sphere Model of Rubber Elasticity
,”
J. Mech. Phys. Solids.
,
52
(
11
), pp.
2617
2660
. 10.1016/j.jmps.2004.03.011
14.
Murakami
,
S.
,
1988
, “
Mechanical Modeling of Material Damage
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
280
286
. 10.1115/1.3173673
15.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
. 10.1115/1.3225775
16.
Steinmann
,
P.
, and
Carol
,
I.
,
1998
, “
A Framework for Geometrically Nonlinear Continuum Damage Mechanics
,”
Int. J. Eng. Sci.
,
36
(
15
), pp.
1793
1814
. 10.1016/S0020-7225(97)00116-X
17.
Rastiello
,
G.
,
Giry
,
C.
,
Gatuingt
,
F.
, and
Desmorat
,
R.
,
2018
, “
From Diffuse Damage to Strain Localization From An Eikonal Non-Local (enl) Continuum Damage Model With Evolving Internal Length
,”
Comput. Methods. Appl. Mech. Eng.
,
331
, pp.
650
674
. 10.1016/j.cma.2017.12.006
18.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids.
,
41
(
2
), pp.
389
412
. 10.1016/0022-5096(93)90013-6
19.
Frémond
,
M.
, and
Nedjar
,
B.
,
1996
, “
Damage, Gradient of Damage and Principle of Virtual Power
,”
Int. J. Solids. Struct.
,
33
(
8
), pp.
1083
1103
. 10.1016/0020-7683(95)00074-7
20.
Duda
,
F. P.
,
Ciarbonetti
,
A.
,
Sánchez
,
P. J.
, and
Huespe
,
A. E.
,
2015
, “
A Phase-Field/Gradient Damage Model for Brittle Fracture in Elastic–plastic Solids
,”
Int. J. Plast.
,
65
, pp.
269
296
. 10.1016/j.ijplas.2014.09.005
21.
Zaitsev
,
V. F.
, and
Polyanin
,
A. D.
,
2002
,
Handbook of Exact Solutions for Ordinary Differential Equations
,
Chapman and Hall/CRC
,
New York, NY
.
22.
Chambolle
,
A.
,
2004
, “
An Approximation Result for Special Functions With Bounded Deformation
,”
J. de mathématiques pures et appliquées
,
83
(
7
), pp.
929
954
. 10.1016/j.matpur.2004.02.004
23.
Hocine
,
N. A.
,
Abdelaziz
,
M. N.
, and
Imad
,
A.
,
2002
, “
Fracture Problems of Rubbers: J-integral Estimation Based Upon η Factors and An Investigation on the Strain Energy Density Distribution As a Local Criterion
,”
Int. J. Fract.
,
117
(
1
), pp.
1
23
. 10.1023/A:1020967429222
24.
Fujiwara
,
K.
,
Nakata
,
T.
,
Okamoto
,
N.
, and
Muramatsu
,
K.
,
1993
, “
Method for Determining Relaxation Factor for Modified Newton-Raphson Method
,”
IEEE. Trans. Magn.
,
29
(
2
), pp.
1962
1965
. 10.1109/20.250793
25.
Cuvelier
,
F.
,
Japhet
,
C.
, and
Scarella
,
G.
,
2013
, “
An Efficient Way to Perform the Assembly of Finite Element Matrices in Matlab and Octave
.”
preprint arXiv:1305.3122
.
You do not currently have access to this content.