Abstract

The topological design of structures to avoid vibration resonance for a certain external excitation frequency is often desired. This paper considers the topology optimization of freely vibrating bi-material structures with fixed/varying attached mass positions, targeting at maximizing the frequency band gap centering at a specified frequency. A band gap measure index is proposed to measure the size of the band gap with a specified center frequency. Aiming at maximizing this measure index, the topology optimization problem is formulated on the basis of the material-field series-expansion (MFSE) method, which greatly reduces the number of design variables and at the same time keeps the capability to describe relatively complex structural topologies with clear boundaries. As the considered optimization problem is highly non-linear and may yield multiple local minima, a sequential Kriging-based optimization solution strategy is employed to effectively solve the optimization problem. This solution strategy exhibits a relatively strong global search capability and requires no sensitivity information. With the present topology optimization model and the gradient-free algorithm, relative large band gaps with specified center frequencies have been obtained for two-dimensional (2D) beams and three-dimensional (3D) plates, without specifying the frequency orders between which the desired band gap occurs in prior.

References

1.
Olhoff
,
N.
,
1976
, “
Optimization of Vibrating Beams With Respect to Higher Order Natural Frequencies
,”
Struct. Eng. Mech.
,
4
(
1
), pp.
87
122
. 10.1080/03601217608907283
2.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
3.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Multidiscipl. Optim.
,
4
(
3–4
), pp.
250
252
.
4.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
. 10.1016/S0045-7825(02)00559-5
5.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
. 10.1016/j.jcp.2003.09.032
6.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
. 10.1016/0045-7949(93)90035-C
7.
Huang
,
X.
, and
Xie
,
Y.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
. 10.1016/j.finel.2007.06.006
8.
Díaaz
,
A. R.
, and
Kikuchi
,
N.
,
1992
, “
Solutions to Shape and Topology Eigenvalue Optimization Problems Using a Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
35
(
7
), pp.
1487
1502
. 10.1002/nme.1620350707
9.
Xie
,
Y.
, and
Steven
,
G.
,
1994
, “
A Simple Approach to Structural Frequency Optimization
,”
Comput. Struct.
,
53
(
6
), pp.
1487
1491
. 10.1016/0045-7949(94)90414-6
10.
Krog
,
L. A.
, and
Olhoff
,
N.
,
1999
, “
Optimum Topology and Reinforcement Design of Disk and Plate Structures With Multiple Stiffness and Eigenfrequency Objectives
,”
Comput. Struct.
,
72
(
4–5
), pp.
535
563
.
11.
Olhoff
,
N.
, and
Du
,
J.
,
2005
, “
Topology Optimization of Structures Against Vibration and Noise
,”
12th International Congress on Sound and Vibration
,
Lisbon, Portugal
,
July 11–14
, pp.
81
100
.
12.
Xia
,
Q.
,
Shi
,
T.
, and
Wang
,
M. Y.
,
2011
, “
A Level Set Based Shape and Topology Optimization Method for Maximizing the Simple or Repeated First Eigenvalue of Structure Vibration
,”
Struct. Multidiscipl. Optim.
,
43
(
4
), pp.
473
485
. 10.1007/s00158-010-0595-6
13.
Takezawa
,
A.
,
Nishiwaki
,
S.
, and
Kitamura
,
M.
,
2010
, “
Shape and Topology Optimization Based on the Phase Field Method and Sensitivity Analysis
,”
J. Comput. Phys.
,
229
(
7
), pp.
2697
2718
. 10.1016/j.jcp.2009.12.017
14.
Huang
,
X.
,
Zuo
,
Z.
, and
Xie
,
Y.
,
2010
, “
Evolutionary Topological Optimization of Vibrating Continuum Structures for Natural Frequencies
,”
Comput. Struct.
,
88
(
5–6
), pp.
357
364
.
15.
Xu
,
B.
,
Jiang
,
J.
,
Tong
,
W.
, and
Wu
,
K.
,
2003
, “
Topology Group Concept for Truss Topology Optimization With Frequency Constraints
,”
J. Sound Vib.
,
261
(
5
), pp.
911
925
. 10.1016/S0022-460X(02)01021-0
16.
Hagiwara
,
I.
,
1994
, “
Eigenfrequency Maximization of Plates by Optimization of Topology Using Homogenization and Mathematical Programming
,”
JSME Int. J., Ser. C
,
37
(
4
), pp.
667
677
. 10.1299/JSMEC1993.37.667
17.
Niu
,
B.
,
Yan
,
J.
, and
Cheng
,
G.
,
2009
, “
Optimum Structure With Homogeneous Optimum Cellular Material for Maximum Fundamental Frequency
,”
Struct. Multidiscipl. Optim.
,
39
(
2
), pp.
115
132
. 10.1007/s00158-008-0334-4
18.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Cheng
,
H.-C.
,
1995
, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
,
121
(
1–4
), pp.
259
280
. 10.1016/0045-7825(94)00714-X
19.
Kosaka
,
I.
, and
Swan
,
C. C.
,
1999
, “
A Symmetry Reduction Method for Continuum Structural Topology Optimization
,”
Comput. Struct.
,
70
(
1
), pp.
47
61
.
20.
Xie
,
Y.
, and
Steven
,
G.
,
1996
, “
Evolutionary Structural Optimization for Dynamic Problems
,”
Comput. Struct.
,
58
(
6
), pp.
1067
1073
. 10.1016/0045-7949(95)00235-9
21.
Halkjær
,
S.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2005
, “
Inverse Design of Phononic Crystals by Topology Optimization
,”
Z. Kristallogr.—Cryst. Mater.
,
220
(
9–10
), pp.
895
905
.
22.
Du
,
J.
, and
Olhoff
,
N.
,
2005
, “
Topology Optimization of Continuum Structures With Respect to Simple and Multiple Eigenfrequencies
,”
6th World Congresses of Structural and Multidisciplinary Optimization
,
Rio de Janeiro, Brazil
,
May 30–June 3
, pp.
1
9
.
23.
Jensen
,
J. S.
, and
Pedersen
,
N. L.
,
2006
, “
On Maximal Eigenfrequency Separation in Two-Material Structures: The 1D and 2D Scalar Cases
,”
J. Sound Vib.
,
289
(
4–5
), pp.
967
986
. 10.1016/j.jsv.2005.03.028
24.
Lopes
,
H. N.
,
Mahfoud
,
J.
, and
Pavanello
,
R.
, “
High Natural Frequency Gap Topology Optimization of Bi-Material Elastic Structures and Band Gap Analysis
,”
Struct. Multidiscipl. Optim.
, pp.
1
16
.
25.
Ma
,
Z.-D.
,
Cheng
,
H.-C.
, and
Kikuchi
,
N.
,
1994
, “
Structural Design for Obtaining Desired Eigenfrequencies by Using the Topology and Shape Optimization Method
,”
Comput. Syst. Eng.
,
5
(
1
), pp.
77
89
. 10.1016/0956-0521(94)90039-6
26.
Borel
,
P. I.
,
Harpøth
,
A.
,
Frandsen
,
L. H.
,
Kristensen
,
M.
,
Shi
,
P.
,
Jensen
,
J. S.
, and
Sigmund
,
O.
,
2004
, “
Topology Optimization and Fabrication of Photonic Crystal Structures
,”
Opt. Express
,
12
(
9
), pp.
1996
2001
. 10.1364/OPEX.12.001996
27.
Li
,
Q.
,
Wu
,
Q.
,
Liu
,
J.
,
He
,
J.
, and
Liu
,
S.
,
2020
, “
Topology Optimization of Vibrating Structures With Frequency Band Constraints
,”
Struct. Multidiscipl. Optim.
,
63
, pp.
1203
1218
.
28.
Olhoff
,
N.
, and
Du
,
J.
,
2016
, “
Generalized Incremental Frequency Method for Topological Designof Continuum Structures for Minimum Dynamic Compliance Subject to Forced Vibration at a Prescribed Low or High Value of the Excitation Frequency
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1113
1141
. 10.1007/s00158-016-1574-3
29.
Takezawa
,
A.
,
Daifuku
,
M.
,
Nakano
,
Y.
,
Nakagawa
,
K.
,
Yamamoto
,
T.
, and
Kitamura
,
M.
,
2016
, “
Topology Optimization of Damping Material for Reducing Resonance Response Based on Complex Dynamic Compliance
,”
J. Sound Vib.
,
365
, pp.
230
243
. 10.1016/j.jsv.2015.11.045
30.
Silva
,
O. M.
,
Neves
,
M. M.
, and
Lenzi
,
A.
,
2019
, “
A Critical Analysis of Using the Dynamic Compliance as Objective Function in Topology Optimization of One-Material Structures Considering Steady-State Forced Vibration Problems
,”
J. Sound Vib.
,
444
, pp.
1
20
. 10.1016/j.jsv.2018.12.030
31.
Yoon
,
G. H.
,
2010
, “
Structural Topology Optimization for Frequency Response Problem Using Model Reduction Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
25–28
), pp.
1744
1763
. 10.1016/j.cma.2010.02.002
32.
Shu
,
L.
,
Wang
,
M. Y.
,
Fang
,
Z.
,
Ma
,
Z.
, and
Wei
,
P.
,
2011
, “
Level Set Based Structural Topology Optimization for Minimizing Frequency Response
,”
J. Sound Vib.
,
330
(
24
), pp.
5820
5834
. 10.1016/j.jsv.2011.07.026
33.
Niu
,
B.
,
He
,
X.
,
Shan
,
Y.
, and
Yang
,
R.
,
2018
, “
On Objective Functions of Minimizing the Vibration Response of Continuum Structures Subjected to External Harmonic Excitation
,”
Struct. Multidiscipl. Optim.
,
57
(
6
), pp.
2291
2307
.
34.
Zhang
,
X.
, and
Kang
,
Z.
,
2014
, “
Dynamic Topology Optimization of Piezoelectric Structures With Active Control for Reducing Transient Response
,”
Comput. Methods Appl. Mech. Eng.
,
281
, pp.
200
219
. 10.1016/j.cma.2014.08.011
35.
Yan
,
K.
,
Cheng
,
G. D.
, and
Wang
,
B. P.
,
2018
, “
Topology Optimization of Damping Layers in Shell Structures Subject to Impact Loads for Minimum Residual Vibration
,”
J. Sound Vib.
,
431
, pp.
226
247
. 10.1016/j.jsv.2018.06.003
36.
Maeda
,
Y.
,
Nishiwaki
,
S.
,
Izui
,
K.
,
Yoshimura
,
M.
,
Matsui
,
K.
, and
Terada
,
K.
,
2006
, “
Structural Topology Optimization of Vibrating Structures With Specified Eigenfrequencies and Eigenmode Shapes
,”
Int. J. Numer. Methods Eng.
,
67
(
5
), pp.
597
628
. 10.1002/nme.1626
37.
Yoon
,
G. H.
,
2010
, “
Maximizing the Fundamental Eigenfrequency of Geometrically Nonlinear Structures by Topology Optimization Based on Element Connectivity Parameterization
,”
Comput. Struct.
,
88
(
1–2
), pp.
120
133
.
38.
Du
,
J.
, and
Olhoff
,
N.
,
2007
, “
Topological Design of Freely Vibrating Continuum Structures for Maximum Values of Simple and Multiple Eigenfrequencies and Frequency Gaps
,”
Struct. Multidiscipl. Optim.
,
34
(
2
), pp.
91
110
. 10.1007/s00158-007-0101-y
39.
Kang
,
Z.
,
He
,
J.
,
Shi
,
L.
, and
Miao
,
Z.
,
2020
, “
A Method Using Successive Iteration of Analysis and Design for Large-Scale Topology Optimization Considering Eigenfrequencies
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112847
. 10.1016/j.cma.2020.112847
40.
Ferrari
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2018
, “
Eigenvalue Topology Optimization via Efficient Multilevel Solution of the Frequency Response
,”
Int. J. Numer. Methods Eng.
,
115
(
7
), pp.
872
892
. 10.1002/nme.5829
41.
Silva
,
O. M.
,
Neves
,
M. M.
, and
Lenzi
,
A.
,
2020
, “
On the Use of Active and Reactive Input Power in Topology Optimization of one-Material Structures Considering Steady-State Forced Vibration Problems
,”
J. Sound Vib.
,
464
, p.
114989
.
42.
Silva
,
O. M.
, and
Neves
,
M. M.
,
2020
, “
A Strategy Based on the Strain-to-Kinetic Energy Ratio to Ensure Stability and Convergence in Topology Optimization of Globally Resonating One-Material Structures
,”
Int. J. Numer. Methods Eng.
,
121
(
16
), pp.
3636
3659
.
43.
Luo
,
Y.
, and
Bao
,
J.
,
2019
, “
A Material-Field Series-Expansion Method for Topology Optimization of Continuum Structures
,”
Comput. Struct.
,
225
, p.
106122
. 10.1016/j.compstruc.2019.106122
44.
Luo
,
Y.
,
Xing
,
J.
, and
Kang
,
Z.
,
2020
, “
Topology Optimization Using Material-Field Series Expansion and Kriging-Based Algorithm: An Effective Non-Gradient Method
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112966
. 10.1016/j.cma.2020.112966
45.
Luo
,
Y.
,
Zhan
,
J.
,
Xing
,
J.
, and
Kang
,
Z.
,
2019
, “
Non-Probabilistic Uncertainty Quantification and Response Analysis of Structures With a Bounded Field Model
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
663
678
. 10.1016/j.cma.2018.12.043
46.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2001
, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
22
(
2
), pp.
116
124
. 10.1007/s001580100129
47.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
Hoboken, NJ
.
48.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
49.
Liu
,
J.
,
Song
,
W.-P.
,
Han
,
Z.-H.
, and
Zhang
,
Y.
,
2017
, “
Efficient Aerodynamic Shape Optimization of Transonic Wings Using a Parallel Infilling Strategy and Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
925
943
. 10.1007/s00158-016-1546-7
You do not currently have access to this content.