Abstract

We study the elastodynamics of a periodic metastructure incorporating a defect pair that enforces a parity-time (PT) symmetry due to judiciously engineered imaginary impedance elements—one having energy amplification (gain) and the other having an equivalent attenuation (loss) mechanism. We show that their presence affects the initial band structure of the periodic Hermitian metastructure and leads to the formation of numerous exceptional points (EPs) which are mainly located at the band edges where the local density of modes is higher. The spatial location of the PT-symmetric defect serves as an additional control over the number of emerging EPs in the corresponding spectra as well as the critical non-Hermitian (gain/loss) strength required to create the first EP—a specific defect location minimizes the critical non-Hermitian strength. We use both finite element and coupled-mode-theory-based models to investigate these metastructures and use a time-independent second-order perturbation theory to further demonstrate the influence of the size of the metastructure and the PT-symmetric defect location on the minimum non-Hermitian strength required to create the first EP in a band. Our findings motivate feasible designs for the experimental realization of EPs in elastodynamic metastructures.

References

1.
Bender
,
C. M.
, and
Boettcher
,
S.
,
1998
, “
Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry
,”
Phys. Rev. Lett.
,
80
(
24
), pp.
5243
5246
.
2.
Bender
,
C. M.
,
Boettcher
,
S.
, and
Meisinger
,
P. N.
,
1999
, “
PT-Symmetric Quantum Mechanics
,”
J. Math. Phys.
,
40
(
5
), pp.
2201
2229
.
3.
Bender
,
C. M.
,
Brody
,
D. C.
, and
Jones
,
H. F.
,
2002
, “
Complex Extension of Quantum Mechanics
,”
Phys. Rev. Lett.
,
89
(
27
), p.
270401
.
4.
Bender
,
C. M.
,
2007
, “
Making Sense of Non-Hermitian Hamiltonians
,”
Rep. Prog. Phys.
,
70
(
6
), pp.
947
1018
.
5.
Bendix
,
O.
,
Fleischmann
,
R.
,
Kottos
,
T.
, and
Shapiro
,
B.
,
2009
, “
Exponentially Fragile PT Symmetry in Lattices With Localized Eigenmodes
,”
Phys. Rev. Lett.
,
103
(
3
), p.
030402
.
6.
El-Ganainy
,
R.
,
Makris
,
K. G.
,
Christodoulides
,
D. N.
, and
Musslimani
,
Z. H.
,
2007
, “
Theory of Coupled Optical PT-Symmetric Structures
,”
Opt. Lett.
,
32
(
17
), p.
2632
.
7.
Makris
,
K. G.
,
El-Ganainy
,
R.
,
Christodoulides
,
D. N.
, and
Musslimani
,
Z. H.
,
2008
, “
Beam Dynamics in PT Symmetric Optical Lattices
,”
Phys. Rev. Lett.
,
100
(
10
), p.
103904
.
8.
Guo
,
A.
,
Salamo
,
G. J.
,
Duchesne
,
D.
,
Morandotti
,
R.
,
Volatier-Ravat
,
M.
,
Aimez
,
V.
,
Siviloglou
,
G. A.
, and
Christodoulides
,
D. N.
,
2009
, “
Observation of PT-Symmetry Breaking in Complex Optical Potentials
,”
Phys. Rev. Lett.
,
103
(
9
), p.
093902
.
9.
Rüter
,
C. E.
,
Makris
,
K. G.
,
El-Ganainy
,
R.
,
Christodoulides
,
D. N.
,
Segev
,
M.
, and
Kip
,
D.
,
2010
, “
Observation of Parity-Time Symmetry in Optics
,”
Nat. Phys.
,
6
(
3
), pp.
192
195
.
10.
El-Ganainy
,
R.
,
Makris
,
K. G.
,
Khajavikhan
,
M.
,
Musslimani
,
Z. H.
,
Rotter
,
S.
, and
Christodoulides
,
D. N.
,
2018
, “
Non-Hermitian Physics and PT Symmetry
,”
Nat. Phys.
,
14
(
1
), pp.
11
19
.
11.
Zhu
,
B.
,
,
R.
, and
Chen
,
S.
,
2014
, “
PT Symmetry in the Non-Hermitian Su-Schrieffer-Heeger Model With Complex Boundary Potentials
,”
Phys. Rev. A: At., Mol., Opt. Phys.
,
89
(
6
), p.
062102
.
12.
Lin
,
Z.
,
Ramezani
,
H.
,
Eichelkraut
,
T.
,
Kottos
,
T.
,
Cao
,
H.
, and
Christodoulides
,
D. N.
,
2011
, “
Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures
,”
Phys. Rev. Lett.
,
106
(
21
), p.
213901
.
13.
Bittner
,
S.
,
Dietz
,
B.
,
Günther
,
U.
,
Harney
,
H. L.
,
Miski-Oglu
,
M.
,
Richter
,
A.
, and
Schäfer
,
F.
,
2012
, “
PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard
,”
Phys. Rev. Lett.
,
108
(
2
), p.
024101
.
14.
Doppler
,
J.
,
Mailybaev
,
A. A.
,
Böhm
,
J.
,
Kuhl
,
U.
,
Girschik
,
A.
,
Libisch
,
F.
,
Milburn
,
T. J.
,
Rabl
,
P.
,
Moiseyev
,
N.
, and
Rotter
,
S.
,
2016
, “
Dynamically Encircling an Exceptional Point for Asymmetric Mode Switching
,”
Nature
,
537
(
7618
), pp.
76
79
.
15.
Schindler
,
J.
,
Lin
,
Z.
,
Lee
,
J. M.
,
Ramezani
,
H.
,
Ellis
,
F. M.
, and
Kottos
,
T.
,
2012
, “
PT-Symmetric Electronics
,”
J. Phys. A: Math. Theor.
,
45
(
44
), p.
444029
.
16.
Assawaworrarit
,
S.
,
Yu
,
X.
, and
Fan
,
S.
,
2017
, “
Robust Wireless Power Transfer Using a Nonlinear Parity-Time-Symmetric Circuit
,”
Nature
,
546
(
7658
), pp.
387
390
.
17.
Zhu
,
X.
,
Ramezani
,
H.
,
Shi
,
C.
,
Zhu
,
J.
, and
Zhang
,
X.
,
2014
, “
PT -Symmetric Acoustics
,”
Phys. Rev. X
,
4
(
3
), p.
031042
.
18.
Fleury
,
R.
,
Sounas
,
D.
, and
Alù
,
A.
,
2015
, “
An Invisible Acoustic Sensor Based on Parity-Time Symmetry
,”
Nat. Commun.
,
6
(
1
), p.
5905
.
19.
Aurégan
,
Y.
, and
Pagneux
,
V.
,
2017
, “
P T -Symmetric Scattering in Flow Duct Acoustics
,”
Phys. Rev. Lett.
,
118
(
17
), p.
174301
.
20.
Shi
,
C.
,
Dubois
,
M.
,
Chen
,
Y.
,
Cheng
,
L.
,
Ramezani
,
H.
,
Wang
,
Y.
, and
Zhang
,
X.
,
2016
, “
Accessing the Exceptional Points of Parity-Time Symmetric Acoustics
,”
Nat. Commun.
,
7
(
1
), p.
11110
.
21.
Achilleos
,
V.
,
Theocharis
,
G.
,
Richoux
,
O.
, and
Pagneux
,
V.
,
2017
, “
Non-Hermitian Acoustic Metamaterials: Role of Exceptional Points in Sound Absorption
,”
Phys. Rev. B
,
95
(
14
), p.
144303
.
22.
Ding
,
K.
,
Ma
,
G.
,
Xiao
,
M.
,
Zhang
,
Z. Q.
, and
Chan
,
C. T.
,
2016
, “
Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their Experimental Realization
,”
Phys. Rev. X
,
6
(
2
), p.
021007
.
23.
Thevamaran
,
R.
,
Branscomb
,
R. M.
,
Makri
,
E.
,
Anzel
,
P.
,
Christodoulides
,
D.
,
Kottos
,
T.
, and
Thomas
,
E. L.
,
2019
, “
Asymmetric Acoustic Energy Transport in Non-Hermitian Metamaterials
,”
J. Acoust. Soc. Am.
,
146
(
1
), pp.
863
872
.
24.
Domínguez-Rocha
,
V.
,
Thevamaran
,
R.
,
Ellis
,
F. M.
, and
Kottos
,
T.
,
2020
, “
Environmentally Induced Exceptional Points in Elastodynamics
,”
Phys. Rev. Appl.
,
13
(
1
), p.
014060
.
25.
Fang
,
Y.
,
Kottos
,
T.
, and
Thevamaran
,
R.
,
2021
, “
Universal Route for the Emergence of Exceptional Points in PT-Symmetric Metamaterials With Unfolding Spectral Symmetries
,”
New J. Phys.
,
23
(
6
), p.
63079
.
26.
Kononchuk
,
R.
,
Cai
,
J.
,
Ellis
,
F.
,
Thevamaran
,
R.
, and
Kottos
,
T.
,
2022
, “
Exceptional-point-based accelerometers with enhanced signal-to-noise ratio
,”
Nature
,
607
(
7920
), pp.
697
702
.
27.
Gupta
,
A.
,
Kurnosov
,
A.
,
Kottos
,
T.
, and
Thevamaran
,
R.
,
2022
, “
Boosting of Purcell Enhancement Factor Near Exceptional Point Degeneracies in an Elastodynamic Metamaterial
,”
arXiv
. arXiv:2201.10744
28.
Lustig
,
B.
,
Elbaz
,
G.
,
Muhafra
,
A.
, and
Shmuel
,
G.
,
2019
, “
Anomalous Energy Transport in Laminates With Exceptional Points
,”
J. Mech. Phys. Solids
,
133
, p.
103719
.
29.
Hou
,
Z.
, and
Assouar
,
B.
,
2018
, “
Tunable Elastic Parity-Time Symmetric Structure Based on the Shunted Piezoelectric Materials
,”
J. Appl. Phys.
,
123
(
8
), p.
085101
.
30.
Rosa
,
M. I. N.
,
Mazzotti
,
M.
, and
Ruzzene
,
M.
,
2021
, “
Exceptional Points and Enhanced Sensitivity in PT-Symmetric Continuous Elastic Media
,”
J. Mech. Phys. Solids
,
149
, p.
104325
.
31.
Bludov
,
Y. V.
,
Hang
,
C.
,
Huang
,
G.
, and
Konotop
,
V. V.
,
2014
, “
PT-Symmetric Coupler With a Coupling Defect: Soliton Interaction With Exceptional Point
,”
Opt. Lett.
,
39
(
12
), p.
3382
.
32.
Abdullaev
,
F. K.
,
Brazhnyi
,
V. A.
, and
Salerno
,
M.
,
2013
, “
Scattering of gap solitons by PT-symmetric defects
,”
Phys. Rev. A: At., Mol., Opt. Phys.
,
88
(
4
), p.
043829
.
33.
Zhang
,
X.
,
Chai
,
J.
,
Huang
,
J.
,
Chen
,
Z.
,
Li
,
Y.
, and
Malomed
,
B. A.
,
2014
, “
Discrete Solitons and Scattering of Lattice Waves in Guiding Arrays With a Nonlinear PT -Symmetric Defect
,”
Opt. Exp.
,
22
(
11
), p.
13927
.
34.
Musslimani
,
Z. H.
,
Makris
,
K. G.
,
El-Ganainy
,
R.
, and
Christodoulides
,
D. N.
,
2008
, “
Optical Solitons in PT Periodic Potentials
,”
Phys. Rev. Lett.
,
100
(
3
), p.
030402
.
35.
Regensburger
,
A.
,
Miri
,
M. A.
,
Bersch
,
C.
,
Näger
,
J.
,
Onishchukov
,
G.
,
Christodoulides
,
D. N.
, and
Peschel
,
U.
,
2013
, “
Observation of Defect States in PT-Symmetric Optical Lattices
,”
Phys. Rev. Lett.
,
110
(
22
), p.
223902
.
36.
Jin
,
L.
,
Wang
,
P.
, and
Song
,
Z.
,
2017
, “
Su-Schrieffer-Heeger Chain With One Pair of PT-Symmetric Defects
,”
Sci. Rep.
,
7
(
1
), p.
5903
.
37.
Mostafavi
,
F.
,
Yuce
,
C.
,
Maganã-Loaiza
,
O. S.
,
Schomerus
,
H.
, and
Ramezani
,
H.
,
2020
, “
Robust Localized Zero-Energy Modes From Locally Embedded PT -Symmetric Defects
,”
Phys. Rev. Res.
,
2
(
3
), p.
032057
.
38.
Dmitriev
,
S. v.
,
Suchkov
,
S. v.
,
Sukhorukov
,
A. A.
, and
Kivshar
,
Y. S.
,
2011
, “
Scattering of Linear and Nonlinear Waves in a Waveguide Array With a PT-Symmetric Defect
,”
Phys. Rev. A: At., Mol., Opt. Phys.
,
84
(
1
), p.
013833
.
39.
Izrailev
,
F. M.
,
Kottos
,
T.
, and
Tsironis
,
G. P.
,
1996
, “
Scaling Properties of the Localization Length in One-Dimensional Paired Correlated Binary Alloys of Finite Size
,”
J. Phys.: Condens. Matter
,
8
(
16
), pp.
2823
2834
.
You do not currently have access to this content.