Abstract

With the utilization of a representative volume element, we investigate the effect of interfacial adhesion on the in-plane viscoelasticity of graphene oxide thin films. A multiple-bond contact model is employed for the interfacial adhesion due to the dynamic association and dissociation of molecular bonds. With an explicit finite element method, we simulate stress–strain curves upon uniaxial loading. Our results reveal that the reversible interfacial adhesion leads to the viscoelasticity of thin films. We further find that the thickness of layers within thin films and also other parameters can have a strong effect on the viscoelasticity of thin films. Local buckling/wrinkling of layers similar to that within engineered graphene oxide thin films is also observed in some simulations. This work might provide important insights into the fabrication of graphene oxide thin films with desirable mechanical performance.

References

1.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nat. Mater.
,
6
(
3
), pp.
183
191
.
2.
Frank
,
I. W.
,
Tanenbaum
,
D. M.
,
van der Zande
,
A. M.
, and
McEuen
,
P. L.
,
2007
, “
Mechanical Properties of Suspended Graphene Sheets
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom.
,
25
(
6
), p.
2558
.
3.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
4.
Gómez-Navarro
,
C.
,
Burghard
,
M.
, and
Kern
,
K.
,
2008
, “
Elastic Properties of Chemically Derived Single Graphene Sheets
,”
Nano Lett.
,
8
(
7
), pp.
2045
2049
.
5.
Yuan
,
W.
, and
Shi
,
G.
,
2013
, “
Graphene-Based gas Sensors
,”
J. Mater. Chem. A
,
1
(
35
), p.
10078
.
6.
Smith
,
A. D.
,
Niklaus
,
F.
,
Paussa
,
A.
,
Vaziri
,
S.
,
Fischer
,
A. C.
,
Sterner
,
M.
,
Forsberg
,
F.
, et al
,
2013
, “
Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes
,”
Nano Lett.
,
13
(
7
), pp.
3237
3242
.
7.
Huang
,
X.
,
Qi
,
X.
,
Boey
,
F.
, and
Zhang
,
H.
,
2012
, “
Graphene-Based Composites
,”
Chem. Soc. Rev.
,
41
(
2
), pp.
666
686
.
8.
Bhushan
,
B.
,
Israelachvili
,
J. N.
, and
Landman
,
U.
,
1995
, “
Nanotribology: Friction, Wear and Lubrication at the Atomic Scale
,”
Nature
,
374
(
6523
), pp.
607
616
.
9.
Dikin
,
D. A.
,
Stankovich
,
S.
,
Zimney
,
E. J.
,
Piner
,
R. D.
,
Dommett
,
G. H. B.
,
Evmenenko
,
G.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2007
, “
Preparation and Characterization of Graphene Oxide Paper
,”
Nature
,
448
(
7152
), pp.
457
460
.
10.
Feng
,
C.
,
Yi
,
Z.
,
Dumée
,
L. F.
,
She
,
F.
,
Peng
,
Z.
,
Gao
,
W.
, and
Kong
,
L.
,
2018
, “
Tuning Micro-Wrinkled Graphene Films for Stretchable Conductors of Controllable Electrical Conductivity
,”
Carbon
,
139
, pp.
672
679
.
11.
Shen
,
X.
,
Lin
,
X.
,
Yousefi
,
N.
,
Jia
,
J.
, and
Kim
,
J.
,
2014
, “
Wrinkling in Graphene Sheets and Graphene Oxide Papers
,”
Carbon
,
66
, pp.
84
92
.
12.
Routh
,
P.
,
Layek
,
R. K.
, and
Nandi
,
A. K.
,
2012
, “
Negative Differential Resistance and Improved Optoelectronic Properties in Ag Nanoparticles-Decorated Graphene Oxide-Riboflavin Hybrids
,”
Carbon
,
50
(
10
), pp.
3422
3434
.
13.
Hou
,
Y.
,
Zhu
,
Y.
,
Liu
,
X.
,
Dai
,
Z.
,
Liu
,
L.
,
Wu
,
H.
, and
Zhang
,
Z.
,
2017
, “
Elastic-Plastic Properties of Graphene Engineered by Oxygen Functional Groups
,”
J. Phys. D: Appl. Phys.
,
50
(
38
), p.
385305
.
14.
Su
,
Y.
,
Wei
,
H.
,
Gao
,
R.
,
Yang
,
Z.
,
Zhang
,
J.
,
Zhong
,
Z.
, and
Zhang
,
Y.
,
2012
, “
Exceptional Negative Thermal Expansion and Viscoelastic Properties of Graphene Oxide Paper
,”
Carbon
,
50
(
8
), pp.
2804
2809
.
15.
Vallés
,
C.
,
Young
,
R. J.
,
Lomax
,
D. J.
, and
Kinloch
,
L. A.
,
2014
, “
The Rheological Behavior of Concentrated Dispersions of Graphene Oxide
,”
J. Mater. Sci.
,
49
(
18
), pp.
6311
6320
.
16.
Roenbeck
,
M. R.
,
Furmachuk
,
A.
,
An
,
Z.
,
Paci
,
J. T.
,
Wei
,
X.
,
Nguyen
,
S. T.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
,
2015
, “
Molecular-Level Engineering of Adhesion in Carbon Nanomaterial Interfaces
,”
Nano Lett.
,
15
(
7
), pp.
4504
4516
.
17.
Filleter
,
T.
,
Yockel
,
S.
,
Naraghi
,
M.
,
Paci
,
J. T.
,
Compton
,
O. C.
,
Mayes
,
M. L.
,
Nguyen
,
S. T.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
,
2012
, “
Experimental-Computational Study of Shear Interactions Within Double-Walled Carbon Nanotube Bundles
,”
Nano Lett.
,
12
(
2
), pp.
732
742
.
18.
Roenbeck
,
M. R.
,
Wei
,
X.
,
Beese
,
A. M.
,
Naraghi
,
M.
,
Furmanchuk
,
A.
,
Paci
,
J. T.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
,
2014
, “
In Situ Scanning Electron Microscope Peeling to Quantify Surface Energy Between Multiwalled Carbon Nanotubes and Graphene
,”
ACS Nano
,
8
(
1
), pp.
124
138
.
19.
Liu
,
F.
,
Chung
,
S.
,
Oh
,
G.
, and
Seo
,
T. S.
,
2012
, “
Three-Dimensional Graphene Oxide Nanostructure for Fast and Efficient Water-Soluble Dye Removal
,”
ACS Appl. Mater. Interfaces
,
4
(
2
), pp.
922
927
.
20.
Sun
,
Y.
,
Choi
,
W. M.
,
Jiang
,
H. Q.
,
Huang
,
Y. Y.
, and
Rogers
,
J. A.
,
2006
, “
Controlled Buckling of Semiconductor Nanoribbons for Stretchable Electronics
,”
Nat Nanotechnol.
,
1
(
3
), pp.
201
207
.
21.
Chen
,
B.
,
Wu
,
P. D.
, and
Gao
,
H.
,
2008
, “
Hierarchical Modelling of Attachment and Detachment Mechanisms of Gecko Toe Adhesion
,”
Proc. R. Soc. A
,
464
(
2094
), pp.
1639
1652
.
22.
Chen
,
B.
,
Wu
,
P.
, and
Gao
,
H.
,
2009
, “
Pre-Tension Generates Strongly Reversible Adhesion of a Spatula Pad on Substrate
,”
J. R. Soc., Interface
,
6
(
35
), pp.
529
537
.
23.
Yang
,
M.
,
Xu
,
Z.
,
Li
,
P.
,
Guo
,
F.
,
Liu
,
Y.
,
Xiao
,
Y.
,
Gao
,
W.
, and
Gao
,
C.
,
2018
, “
Interlayer Crosslinking to Conquer the Stress Relaxation of Graphene Laminated Materials
,”
Mater. Horiz.
,
5
(
6
), pp.
1112
1119
.
24.
Maria
,
H. J.
,
Lyczko
,
N.
,
Nzihou
,
A.
,
Joseph
,
K.
,
Mathew
,
C.
, and
Thomas
,
S.
,
2014
, “
Stress Relaxation Behavior of Organically Modified Montmorillonite Filled Natural Rubber/Nitrile Rubber Nanocomposites
,”
Appl. Clay Sci.
,
87
, pp.
120
128
.
25.
Soler-Crespo
,
R. A.
,
Gao
,
W.
,
Mao
,
L.
,
Nguyen
,
H. T.
,
Roenbeck
,
M. R.
,
Paci
,
J. T.
,
Huang
,
J.
,
Nguyen
,
S. T.
, and
Espinosa
,
H. D.
,
2018
, “
The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide
,”
ACS Nano
,
12
(
6
), pp.
6089
6099
.
26.
Chen
,
H.
, and
Chen
,
S.
,
2013
, “
The Peeling Behavior of a Graphene Sheet on a Nano-Scale Corrugated Surface
,”
J. Phys. D: Appl. Phys.
,
46
(
43
), p.
435305
.
27.
Mo
,
Y.
,
Turner
,
K. T.
, and
Szlufarska
,
I.
,
2009
, “
Friction Laws at the Nanoscale
,”
Nature
,
457
(
7233
), pp.
1116
1119
.
28.
Filippov
,
A. E.
,
Klafter
,
J.
, and
Urbakh
,
M.
,
2004
, “
Friction Through Dynamical Formation and Rupture of Molecular Bonds
,”
Phys. Rev. Lett.
,
92
(
13
), p.
135503
.
29.
Barel
,
I.
,
Urbakh
,
M.
,
Jansen
,
L.
, and
Schirmeisen
,
A.
,
2010
, “
Multibond Dynamics of Nanoscale Friction: The Role of Temperature
,”
Phys. Rev. Lett.
,
104
(
6
), p.
066104
.
30.
Li
,
G.
,
2021
, “
Studies of the Viscoelasticity of Graphene Oxide Films Under Uniaxial Tension Based on Multiple-Bond Contact Theory
,” Master Thesis, Zhejiang University, pp.
19
31
.
31.
Park
,
S.
,
Lee
,
K. S.
,
Bozoklu
,
G.
,
Cai
,
W.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2008
, “
Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking
,”
ACS Nano
,
2
(
3
), pp.
572
578
.
32.
Wan
,
J.
,
Jiang
,
J.
, and
Park
,
H. S.
,
2017
, “
Negative Poisson's Ratio in Graphene Oxide
,”
Nanoscale
,
9
(
11
), pp.
47
412
.
33.
Chen
,
B.
,
Ma
,
N.
,
Bai
,
X.
,
Zhang
,
H.
, and
Zhang
,
Y.
,
2012
, “
Effects of Graphene Oxide on Surface Energy, Mechanical, Damping and Thermal Properties of Ethylene-Propylene-Diene Rubber/Petroleum Resin Blends
,”
RSC Adv.
,
2
(
11
), p.
4683
.
34.
Liu
,
Z.
,
Li
,
Z.
,
Xu
,
Z.
,
Xia
,
Z.
,
Hu
,
X.
,
Kou
,
L.
,
Peng
,
L.
,
Wei
,
Y.
, and
Gao
,
C.
,
2014
, “
Wet-Spun Continuous Graphene Films
,”
Chem. Mater.
,
26
(
23
), pp.
6786
6795
.
35.
Firooz
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2021
, “
Homogenization of Composites With Extended General Interfaces: Comprehensive Review and Unified Modeling
,”
ASME Appl. Mech. Rev.
,
73
(
4
), p.
040802
.
You do not currently have access to this content.