Abstract

Studies have reported that the electromigration-induced void growth velocity in metal thin films is inversely related to the adhesion strength of the metal thin film with the base and passivation layers. It was also observed that the contribution of interface adhesion strength to electromigration resistance decreases with an increase in temperature. In this study, an expression is derived for the diffusive void growth velocity induced by electromigration from a generalized thermodynamically consistent continuum-based theory for reaction–diffusion driven solid-state interface evolution. This relation captures the effect of adhesion with the base and passivation layers on electromigration resistance of thin metal films. Electromigration experiments were carried out at elevated temperatures and high current density to induce voiding in thin Cu metal film deposited on a base layer of TiN and passivated with TiN or SiNx. The degradation of interface adhesion strength with temperature is modeled using an Andrade-type of relationship. The void growth rates characterized in these experiments are combined with the expression for void growth rate to estimate the interface adhesion strength for the Cu–TiN and Cu–SiNx interfaces. The methodology for estimating the adhesion strength of the metal-passivation layer interface is validated through comparison with interface adhesion strengths from mechanical de-adhesion tests reported in the literature.

References

1.
Anderson
,
J.
,
1972
, “
Applications of Thin Films in Microelectronics
,”
Thin. Solid. Films.
,
12
(
1
), pp.
1
15
.
2.
Holloway
,
K.
, and
Fryer
,
P. M.
,
1990
, “
Tantalum as a Diffusion Barrier Between Copper and Silicon
,”
Appl. Phys. Lett.
,
57
(
17
), pp.
1736
1738
.
3.
Chyan
,
O.
,
Arunagiri
,
T. N.
, and
Ponnuswamy
,
T.
,
2003
, “
Electrodeposition of Copper Thin Film on Ruthenium: a Potential Diffusion Barrier for Cu Interconnects
,”
J. Electrochem. Soc.
,
150
(
5
), p.
C347
.
4.
Lei
,
W.-S.
, and
Kumar
,
A.
,
2014
, “Adhesion Measurement of Thin Films and Coatings: Relevance to Microelectronics,”
Adhes. Microelectron.
,
Scrivener Publishing LLC
,
Beverly, MA
, pp.
33
63
.
5.
Rivlin
,
R.
,
1944
, “The Effective Work of Adhesion,”
Collected Papers of RS Rivlin: Volume I and II
,
Springer
,
New York
, pp.
2611
2614
.
6.
Bagchi
,
A.
,
Lucas
,
G.
,
Suo
,
Z.
, and
Evans
,
A.
,
1994
, “
A New Procedure for Measuring the Decohesion Energy for Thin Ductile Films on Substrates
,”
J. Mater. Res.
,
9
(
7
), pp.
1734
1741
.
7.
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1984
, “
Measurement of Adherence of Residually Stressed Thin Films by Indentation I. Mechanics of Interface Delamination
,”
J. Appl. Phys.
,
56
(
10
), pp.
2632
2638
.
8.
Burnett
,
P. J.
, and
Rickerby
,
D. S.
,
1987
, “
The Relationship Between Hardness and Stratch Adhesion
,”
Thin. Solid. Films.
,
154
(
1–2
), pp.
403
416
.
9.
Vlassak
,
J.
, and
Nix
,
W.
,
1992
, “
New Bulge Test Technique for the Determination of Young’s Modulus and Poisson’s Ratio of Thin Films
,”
J. Mater. Res.
,
7
(
12
), pp.
3242
3249
.
10.
Birringer
,
R. P.
,
Chidester
,
P. J.
, and
Dauskardt
,
R. H.
,
2011
, “
High Yield Four-Point Bend Thin Film Adhesion Testing Techniques
,”
Eng. Fract. Mech.
,
78
(
12
), pp.
2390
2398
.
11.
Kim
,
Y. S.
,
Hamamura
,
H.
, and
Shimogaki
,
Y.
,
2002
, “
Adhesion Characteristics Between Chemical Vapor Deposited Cu and Tin Films: Aspects of Process Integration
,”
Jpn. J. Appl. Phys.
,
41
(
3R
), p.
1500
.
12.
Hutchinson
,
J.
, and
Evans
,
A.
,
2000
, “
Mechanics of Materials: Top-Down Approaches to Fracture
,”
Acta. Mater.
,
48
(
1
), pp.
125
135
.
13.
Dauskardt
,
R.
,
Lane
,
M.
,
Ma
,
Q.
, and
Krishna
,
N.
,
1998
, “
Adhesion and Debonding of Multi-layer Thin Film Structures
,”
Eng. Fract. Mech.
,
61
(
1
), pp.
141
162
.
14.
Kim
,
S.
, and
Duquette
,
D.
,
2007
, “
Quantitative Measurement of Interfacial Adheison Between Seedless Electrodeposited Copper and Tantalum Based Diffusion Barriers for Microelectroncis
,”
Electrochem. Solid State Lett.
,
10
(
1
), pp.
D6
D9
.
15.
Lloyd
,
J. R.
,
1999
, “
Electromigration in Integrated Circuit Conductors
,”
J. Phys. D: Appl. Phys.
,
32
(
17
), pp.
R109
R118
.
16.
Lloyd
,
J.
,
Lane
,
M.
,
Liniger
,
E.
,
Hu
,
C.-K.
,
Shaw
,
T.
, and
Rosenberg
,
R.
,
2005
, “
Electromigration and Adhesion
,”
IEEE Trans. Device Mater. Reliab.
,
5
(
1
), pp.
113
118
.
17.
Prasad
,
S. P.
,
Singh
,
Y.
,
Vaitheeswaran
,
P. K.
, and
Subbarayan
,
G.
,
2023
, “
The Connection Between Electromigration Resistance and Thin Film Adhesion and Their Degradation With Temperature
,”
IEEE Trans. Components, Packaging Manuf. Technol.
,
13
(
3
), pp.
426
443
.
18.
Sankarasubramanian
,
S.
,
Cruz
,
J.
,
Yazzie
,
K.
,
Sundar
,
V.
,
Subramanian
,
V.
,
Alazar
,
T.
,
Yagnamurthy
,
S.
,
Cetegen
,
E.
,
McCoy
,
D.
, and
Malatkar
,
P.
,
2017
, “
High-Temperature Interfacial Adhesion Strength Measurement in Electronic Packaging Using the Double Cantilever Beam Method
,”
J. Electron. Packag.
,
139
(
2
), p.
020902
.
19.
Blech
,
I. A.
, and
Kinsboro
,
E.
,
1975
, “
Electromigration in Thin Gold Films on Molybdenum Surfaces
,”
Thin. Solid. Films.
,
25
(
2
), pp.
327
334
.
20.
Blech
,
I. A.
, and
Herring
,
C.
,
1976
, “
Stress Generation by Electromigration
,”
Appl. Phys. Lett.
,
29
(
3
), pp.
131
133
.
21.
Blech
,
I.
, and
Tai
,
K.
,
1977
, “
Measurement of Stress Gradients Generated by Electromigration
,”
Appl. Phys. Lett.
,
30
(
8
), pp.
387
389
.
22.
Ogawa
,
E. T.
,
Bierwag
,
A. J.
,
Lee
,
K.-D.
,
Matsuhashi
,
H.
,
Justison
,
P. R.
,
Ramamurthi
,
A. N.
, and
Ho
,
P. S.
, et al.
2001
, “
Direct Observation of a Critical Length Effect in Dual-Damascene Cu/Oxide Interconnects
,”
Appl. Phys. Lett.
,
78
(
18
), pp.
2652
2654
.
23.
Ney
,
D.
,
Federspiel
,
X.
,
Girault
,
V.
,
Thomas
,
O.
, and
Gergaud
,
P.
,
2006
, “
Stress-Induced Electromigration Backflow Effect in Copper Interconnects
,”
IEEE Trans. Device Mater. Reliab.
,
6
(
2
), pp.
175
180
.
24.
Doyen
,
L.
,
Petitprez
,
E.
,
Waltz
,
P.
,
Federspiel
,
X.
,
Arnaud
,
L.
, and
Wouters
,
Y.
,
2008
, “
Extensive Analysis of Resistance Evolution Due to Electromigration Induced Degradation
,”
J. Appl. Phys.
,
104
(
12
), p.
123521
.
25.
Lee
,
K.-D.
,
Ogawa
,
E. T.
,
Matsuhashi
,
H.
,
Justison
,
P. R.
,
Ko
,
K.-S.
,
Ho
,
P. S.
, and
Blaschke
,
V. A.
,
2001
, “
Electromigration Critical Length Effect in Cu/Oxide Dual-Damascene Interconnects
,”
Appl. Phys. Lett.
,
79
(
20
), pp.
3236
3238
.
26.
Blech
,
I. A.
,
1976
, “
Electromigration in Thin Aluminum Films on Titanium Nitride
,”
J. Appl. Phys.
,
47
(
4
), pp.
1203
1208
.
27.
Hu
,
C.-K.
,
Rosenberg
,
R.
, and
Lee
,
K.
,
1999
, “
Electromigration Path in Cu Thin-Film Lines
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
2945
2947
.
28.
Bhate
,
D. N.
,
Kumar
,
A.
, and
Bower
,
A. F.
,
2000
, “
Diffuse Interface Model for Electromigration and Stress Voiding
,”
J. Appl. Phys.
,
87
(
4
), pp.
1712
1721
.
29.
Fridline
,
D.
, and
Bower
,
A.
,
1999
, “
Influence of Anisotropic Surface Diffusivity on Electromigration Induced Void Migration and Evolution
,”
J. Appl. Phys.
,
85
(
6
), pp.
3168
3174
.
30.
Li
,
Z.
,
Zhao
,
H.
, and
Gao
,
H.
,
1999
, “
A Numerical Study of Electro-migration Voiding by Evolving Level Set Functions on a Fixed Cartesian Grid
,”
J. Comput. Phys.
,
152
(
1
), pp.
281
304
.
31.
Mullins
,
W.
,
1995
, “
Mass Transport At Interfaces in Single Component Systems
,”
Metall. Mater. Trans. A.
,
26
(
8
), pp.
1917
1929
.
32.
Cahn
,
J. W.
, and
Taylor
,
J. E.
,
1994
, “
Overview No. 113 Surface Motion by Surface Diffusion
,”
Acta. Metall. Mater.
,
42
(
4
), pp.
1045
1063
.
33.
Vaitheeswaran
,
P.
,
Udupa
,
A.
,
Sadasiva
,
S.
, and
Subbarayan
,
G.
,
2020
, “
Interface Balance Laws, Phase Growth and Nucleation Conditions for Multiphase Solids With Inhomogeneous Surface Stress
,”
Continuum Mech. Thermodyn.
,
32
(
4
), pp.
987
1010
.
34.
Ho
,
P. S.
,
1970
, “
Motion of Inclusion Induced by a Direct Current and a Temperature Gradient
,”
J. Appl. Phys.
,
41
(
1
), pp.
64
68
.
35.
Sadasiva
,
S.
,
Vaitheeswaran
,
P.
, and
Subbarayan
,
G.
,
2020
, “
A Phase Field Computational Procedure for Electromigration With Specified Contact Angle and Diffusional Anisotropy
,”
Comput. Mech.
,
66
(
2
), pp.
373
390
.
36.
Lane
,
M.
,
Liniger
,
E.
, and
Lloyd
,
J.
,
2003
, “
Relationship Between Interfacial Adhesion and Electromigration in Cu Metallization
,”
J. Appl. Phys.
,
93
(
3
), pp.
1417
1421
.
37.
Tu
,
K.-N.
,
2003
, “
Recent Advances on Electromigration in Very-Large-Scale-Integration of Interconnects
,”
J. Appl. Phys.
,
94
(
9
), pp.
5451
5473
.
38.
Glickman
,
E.
, and
Nathan
,
M.
,
1996
, “
On the Unusual Electromigration Behavior of Copper Interconnects
,”
J. Appl. Phys.
,
80
(
7
), pp.
3782
3791
.
39.
Andrade
,
E. D. C.
,
1930
, “
The Viscosity of Liquids
,”
Nature
,
125
(
3148
), pp.
309
310
.
40.
Balluffi
,
R. W.
,
Allen
,
S.
, and
Carter
,
W. C.
,
2005
,
Kinetics of Materials
,
Wiley
,
New York
.
41.
Wang
,
B.
, and
Siegmund
,
T.
,
2008
, “
A Modified 4-Point Bend Delamination Test
,”
Microelectron. Eng.
,
85
(
2
), pp.
477
485
.
42.
Hofinger
,
I.
,
Oechsner
,
M.
,
Bahr
,
H.
, and
Swain
,
M.
,
1998
, “
Modified Four-Point Bending Specimen for Determining the Interface Fracture Energy for Thin, Brittle Layers
,”
Int. J. Fracture
,
92
(
3
), pp.
213
220
.
43.
Lodder
,
A.
, and
Dekker
,
J.
,
1998
, “
The Electromigration Force in Metallic Bulk
,”
AIP MISC Proceedings
,
Tokyo Japan
,
4-6 June 1997
.
44.
McLean
,
M.
,
1971
, “
Determination of the Surface Energy of Copper as a Function of Crystallographic Orientation and Temperature
,”
Acta. Metall.
,
19
(
4
), pp.
387
393
.
You do not currently have access to this content.