We consider observations and data from live fish and cetaceans, as well as data from engineered flapping foils and fishlike robots, and compare them against fluid mechanics based scaling laws. These laws have been derived on theoretical/numerical/experimental grounds to optimize the power needed for propulsion, or the energy needed for turning and fast starting. The rhythmic, oscillatory motion of fish requires an “impedance matching” between the dynamics of the actively controlled musculature and the fluid loads, to arrive at an optimal motion of the fish’s body. Hence, the degree to which data from live fish, optimized robots, and experimental apparatus are in accordance with, or deviate from these flow-based laws, allows one to assess limitations on performance due to control and sensing choices, and material and structural limitations. This review focuses primarily on numerical and experimental studies of steadily flapping foils for propulsion; three-dimensional effects in flapping foils; multiple foils and foils interacting with bodies; maneuvering and fast-starting foils; the interaction of foils with oncoming, externally-generated vorticity; the influence of Reynolds number on foil performance; scaling effects of flexing stiffness of foils; and scaling laws in fishlike swimming. This review article cites 117 references.

1.
Videler
,
J.
, 1993,
Fish Swimming
,
Chapman and Hall
, London.
2.
Fish
,
F. E.
, and
Hui
,
C. A.
, 1991, “
Dolphin Swimming—A Review
,”
Mammal Rev.
,
21
, pp.
181
195
.
3.
Stamhuis
,
E.
, and
Videler
,
J.
, 1995, “
Quantitative Flow Analysis Around Aquatic Animals Using Laser Sheet Particle Image Velocimetry
,”
J. Exp. Biol.
0022-0949,
198
, pp.
283
294
.
4.
Anderson
,
J. M.
, 1996, “
Vortex Control for Efficient Propulsion
,” Ph.D. thesis, Joint Program, MIT and WHOI, Cambridge, MA.
5.
Mueller
,
U.
,
van den Heuvel
,
B.
,
Stamhuis
,
E.
, and
Videler
,
J.
, 1997, “
Fish Foot Prints: Morphology and Energetics of the Wake Behind a Continuously Swimming Mullet (Chelon Labrosus Risso)
,”
J. Exp. Biol.
0022-0949,
200
, pp.
2893
2806
.
6.
Wolfgang
,
M. J.
,
Anderson
,
J. M.
,
Grosenbaugh
,
M. A.
,
Yue
,
D. K. P.
, and
Triantafyllou
,
M. S.
, 1999, “
Near-Body Flow Dynamics in Swimming Fish
,”
J. Exp. Biol.
0022-0949,
202
, pp.
2303
2327
.
7.
Drucker
,
E. G.
, and
Lauder
,
G. V.
, 1999, “
Locomotor Forces on a Swimming Fish: Three Dimensional Vortex Wake Dynamics Quantified Using DPIV
,”
J. Exp. Biol.
0022-0949,
202
, pp.
2393
2412
.
8.
Drucker
,
E. G.
, and
Lauder
,
G. V.
, 2001, “
Locomotor Function of the Dorsal Fin in Teleost Fishes: Experimental Analysis of the Wake Forces in Sunfish
,”
J. Exp. Biol.
0022-0949,
204
, pp.
2943
2958
.
9.
Lauder
,
G. V.
, 2000, “
Function of the Caudal Fin During Locomotion in Fishes: Kinematics, Flow Visualization and Evolutionary Patterns
,”
Am. Zool.
0003-1569,
40
, pp.
101
122
.
10.
Lighthill
,
J.
, 1975,
Mathematical Biofluiddynamics
,
SIAM
, Philadelphia.
11.
Wu
,
T.
, 1961, “
Swimming of a Waving Plate
,”
J. Fluid Mech.
0022-1120,
10
, pp.
321
344
.
12.
Wu
,
T.
, 1971, “
Hydromechanics of Swimming Propulsion
,”
J. Fluid Mech.
0022-1120,
46
, pp.
337
355
.
13.
Liu
,
H.
, and
Kawachi
,
K.
, 1998, “
A Numerical Study of Insect Flight
,”
J. Comput. Phys.
0021-9991,
146
, pp.
124
156
.
14.
Cheng
,
H. K.
, and
Murillo
,
L. E.
, 1984, “
Lunate-Tail Swimming Propulsion as a Problem of Curved Lifting Line in Unsteady Flow, Part 1: Asymptotic Theory
,”
J. Fluid Mech.
0022-1120,
143
, pp.
327
350
.
15.
Karpouzian
,
G.
,
Spedding
,
G.
, and
Cheng
,
H. K.
, 1990, “
Lunate-Tail Swimming Propulsion, Part 2: Performance Analysis
,”
J. Fluid Mech.
0022-1120,
210
, pp.
329
351
.
16.
McCune
,
J. E.
, and
Tavares
,
T. S.
, 1993, “
Perspective: Unsteady Wing Theory—The Kármán/Sears Legacy
,”
ASME J. Fluids Eng.
0098-2202,
115
(
4
), pp.
548
560
.
17.
Streitlien
,
K.
, and
Triantafyllou
,
M. S.
, 1995, “
Force and Moment on a Joukowski Profile in the Presence of Point Vortices
,”
AIAA J.
0001-1452,
33
(
4
), pp.
603
610
.
18.
Streitlien
,
K.
,
Triantafyllou
,
G. S.
, and
Triantafyllou
,
M. S
, 1996, “
Efficient Foil Propulsion Through Vortex Control
,”
AIAA J.
0001-1452,
34
(
11
), pp.
2315
2319
.
19.
Ramamurti
,
R.
, and
Sandberg
,
W. C.
, 2001, “
Simulation of Flow About Flapping Airfoils Using a Finite Element Incompressible Flow Solver
,”
AIAA J.
0001-1452,
39
, pp.
253
260
.
20.
Ramamurti
,
R.
, and
Sandberg
,
W. C.
, 2002, “
A Three-dimensional Computational Study of the Aerodynamic Mechanisms of Insect Flight
,”
J. Exp. Biol.
0022-0949,
205
, pp.
1507
1518
.
21.
Guglielmini
,
L.
, and
Blondeaux
,
P.
, 2004, “
Propulsive Efficiency of Oscillating Foils
,”
European Journal of Mechanics/B Fluids
(in the press).
22.
Guglielmini
,
L.
,
Blondeaux
,
P.
, and
Vittori
,
G.
, 2004, “
A Simple Model of Propulsive Oscillating Foils
,”
Ocean Eng.
0029-8018
31
(
7
), pp.
883
899
.
23.
Lewin
,
G. C.
, and
Haj-Hariri
,
H.
, 2003, “
Modeling Thrust Generation of a Two-Dimensional Heaving Airfoil in a Viscous Flow
,”
J. Fluid Mech.
0022-1120,
492
, pp.
339
362
.
24.
Von Ellenrieder
,
K. D.
,
Parker
,
K.
, and
Soria
,
J.
, 2003, “
Flow Structures Behind a Heaving and Pitching Finite-Span Wing
,”
J. Fluid Mech.
0022-1120,
490
, pp.
129
138
.
25.
Scherer
,
J. O.
, 1968, “
Experimental and Theoretical Investigation of Large Amplitude Oscillating Foil Propulsion Systems
,”
U.S. Army Engineering Research and Development Laboratories
.
26.
DeLaurier
,
J. D.
, and
Harris
,
J. M.
, 1982, “
Experimental Study of Oscillating Wing Propulsion
,”
J. Aircr.
0021-8669,
19
(
5
), pp.
368
373
.
27.
Lai
,
P. S. K.
,
Bose
,
N.
, and
McGregor
,
R. C.
, 1993, “
Wave Propulsion From a Flexible-Armed, Rigid-Foil Propulsor
,”
Mar. Technol. Soc. J.
0025-3324,
30
(
1
), pp.
28
36
.
28.
Anderson
,
J. M.
,
Streitlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
, 1998, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
0022-1120,
360
, pp.
41
72
.
29.
Read
,
D. A.
, 2001, “
Oscillating Foils for Propulsion and Maneuvering of Ships and Underwater Vehicles
,” SM thesis, MIT, Cambridge, MA.
30.
Ohashi
,
H.
, and
Ishikawa
,
N.
, 1972, “
Visualization Study of Flow Near the Trailing Edge of an Oscillating Airfoil
,”
Bull. JSME
0021-3764,
15
(
85
), pp.
840
847
.
31.
Oshima
,
Y.
, and
Oshima
,
K.
, 1980, “
Vortical Flow Behind an Oscillating Foil
,” in
Proc. 15th Int. Congress
,
Int. Union Theor. Applied Mech.
, North Holland, Amsterdam, pp.
357
368
.
32.
Oshima
,
Y.
, and
Natsume
,
A.
, 1980, “
Flow Field Around an Oscillating Foil
,” in
Flow Visualization II, Proc. 2nd Int. Symp. on Flow Visualization
, Bochum, Germany,
W.
Merzkirch
(ed.),
Hemisphere Publishing
, New York, pp.
295
299
.
33.
Koochesfahani
,
M.
, 1989, “
Vortical Patterns in the Wake of an Oscillating Foil
,”
AIAA J.
0001-1452,
27
, pp.
1200
1205
.
34.
Freymuth
,
P.
, 1988, “
Propulsive Vortical Signature of Plunging and Pitching Airfoils
,”
AIAA J.
0001-1452,
26
, pp.
881
883
.
35.
Freymuth
,
P.
, 1989, “
Visualizing the Connectivity of Vortex Systems for Pitching Wings
,”
ASME J. Fluids Eng.
0098-2202,
111
, pp.
217
220
.
36.
Freymuth
,
P.
, 1990, “
Thrust Generation by an Airfoil in Hover Modes
,”
Exp. Fluids
0723-4864,
9
, pp.
17
24
.
37.
Freymuth
,
P.
, 1991, “
Physical Vortex Visualization as a Reference for Computer Simulation
,” in
Vortex Methods and Vortex Motion
,
K. E.
Gustafson
and
J. A.
Sethian
(eds.),
SIAM
, Philadelphia, pp.
65
94
.
38.
Jones
,
K. D.
,
Dohring
,
C. M.
, and
Platzer
,
M. F.
, 1998, “
Experimental and Computational Investigation of the Knoller-Betz Effect
,”
AIAA J.
0001-1452,
36
(
7
), pp.
1240
1246
.
39.
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Gopalkrishnan
,
R.
, 1991, “
Wake Mechanics for Thrust Generation in Oscillating Foils
,”
Phys. Fluids
0031-9171,
3
(
12
), pp.
2835
2837
.
40.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M. S.
, and
Grosenbaugh
,
M. A.
, 1993, “
Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion
,”
J. Fluids Struct.
0889-9746,
7
, pp.
205
224
.
41.
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Yue
,
D. K. P.
, 2000, “
Hydrodynamics of Fish Swimming
,”
Annu. Rev. Fluid Mech.
0066-4189,
32
, pp.
33
53
.
42.
Fish
,
F. E.
, 1997, “
Biological Designs for Enhanced Maneuverability: Analysis of Marine Mammal Performance
,”
10th Int. Symp. Unmanned Untethered Submersible Technology
,
Special Session on Bio-Engineering Research Related to AUV
, Durham, NH, pp.
109
117
.
43.
Rohr
,
J. J.
, and
Fish
,
F. E.
, 2004, “
Strouhal Numbers and optimization by Odontocete Cetaceans
,”
J. Exp. Biol.
0022-0949,
207
, pp.
1633
1642
.
44.
Nauen
,
J. C.
, and
Lauder
,
G. V.
, 2002, “
Hydrodynamics of Caudal Fin Locomotion by Chub Mackerel Scomber Japonicus (Scombridae)
,”
J. Exp. Biol.
0022-0949,
205
, pp.
1709
1724
.
45.
Motani
,
R.
, 2002, “
Scaling Effects in Caudal Fin Propulsion and the Speed of Ichthyosaurs
,”
Nature (London)
0028-0836,
415
, pp.
309
312
.
46.
Taylor
,
G. K.
,
Nudds
,
R. L.
, and
Thomas
,
A. L. R.
, 2003, “
Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency
,”
Nature (London)
0028-0836,
425
, pp.
707
711
.
47.
Reynolds
,
W. C.
, and
Carr
,
L. W.
, 1985, “
Review of Unsteady, Driven, Separated Flows
,” AIAA Paper No. 85-0527.
48.
McCroskey
,
W. J.
, 1982, “
Unsteady Airfoils
,”
Annu. Rev. Fluid Mech.
0066-4189,
14
, pp.
285
311
.
49.
Maxworthy
,
T.
, 1981, “
The Fluid Dynamics of Insect Flight
,”
Annu. Rev. Fluid Mech.
0066-4189,
13
, pp.
329
350
.
50.
Ellington
,
C. P.
, 1984, “
The Aerodynamics of Hovering Insect Flight
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
305
, pp.
17
181
.
51.
Ellington
,
C. P.
,
Vanderberg
,
C.
,
Wilmott
,
A.
, and
Thomas
,
A.
, 1996, “
Leading Edge Vortices in Insect Flight
,”
Nature (London)
0028-0836,
384
, pp.
626
630
.
52.
Dickinson
,
M. H.
, 1994, “
The Effect of Wing Rotation on Unsteady Aerodynamic Performance at Low Reynolds Numbers
,”
J. Exp. Biol.
0022-0949,
192
, pp.
179
206
.
53.
Dickinson
,
M. H.
,
Lehmann
,
F. O.
, and
Sane
,
S. P.
, 1999, “
Wing Rotation and the Aerodynamic Basis Insect Flight
,”
Science
0036-8075,
284
, pp.
1954
1960
.
54.
Walker
,
J. A.
, 2003, “
Rotational Lift: Something Different or More of the Same?
,”
J. Exp. Biol.
0022-0949,
205
, pp.
3783
3792
.
55.
Maresca
,
C.
,
Favier
,
D.
, and
Rebont
,
J.
, 1979, “
Experiments on an Airfoil at High Angle of Incidence in Longitudinal Oscillations
,”
J. Fluid Mech.
0022-1120,
92
, pp.
671
690
.
56.
Ohmi
,
K.
,
Coutanceau
,
M.
,
Loc
,
T. P.
, and
Dulieu
,
A.
, 1990, “
Vortex Formation Around an Oscillating and Translating Airfoil at Large Incidences
,”
J. Fluid Mech.
0022-1120,
211
, pp.
37
60
.
57.
Ohmi
,
K.
,
Coutanceau
,
M.
,
Daube
,
O.
, and
Loc
,
T. P.
, 1991, “
Further Experiments on Vortex Formation Around an Oscillating and Translating Airfoil at Large Incidences
,”
J. Fluid Mech.
0022-1120,
225
, pp.
607
630
.
58.
Hart
,
D. P.
,
Acosta
,
A.
, and
Leonard
,
A.
, 1992, “
Observations of Cavitation and Wake Structure of Unsteady Tip Vortex Flows
,”
Proc. Int. STG Symp. Propulsors and Cavitation
, Hamburg, Germany, pp.
121
127
.
59.
Ahlborn
,
B.
,
Harper
,
D.
,
Blake
,
R.
,
Ahlborn
,
D.
, and
Cam
,
M.
, 1991, “
Fish Without Footprints
,”
J. Theor. Biol.
0022-5193,
148
, pp.
521
533
.
60.
Lai
,
J. C. S.
, and
Platzer
,
M. F.
, 1998, “
The Jet Characteristics of a Plunging Airfoil
,”
Paper AIAA-98-0101, 36th AIAA Aerospace Sciences Meeting
, Reno, NV.
61.
Guglielmini
,
L.
, 2004, “
Modeling of Thrust Generating Foils
,” Ph.D. thesis, University of Genova, Italy.
62.
Strouhal
,
V.
, 1878, “
Uber Eine Besondere Art der Tonerregung
,”
Ann. Phys. Chem.
0003-3804,
5
(
10
), pp.
216
251
.
63.
Zhu
,
Q.
,
Wolfgang
,
M. J.
,
Yue
,
D. K. P.
, and
Triantafyllou
,
M. S.
, 2002, “
Three-Dimensional Flow Structures and Vorticity Control in Fish-Like Swimming
,”
J. Fluid Mech.
0022-1120,
468
, pp.
1
28
.
64.
Hover
,
F. S.
,
Haugsdal
,
O.
, and
Triantafyllou
,
M. S.
, 2003, “
Control of Angle of Attack Profiles in Flapping Foil Propulsion
,”
J. Fluids Struct.
0889-9746,
19
, pp.
37
47
.
65.
Gursul
,
I.
,
Lin
,
H.
, and
Ho
,
C. M.
, 1991, “
Vorticity Dynamics of 2D and 3D Wings in Unsteady Free Stream
,” AIAA Paper 91-0010, Reno, NV.
66.
Cheng
,
J.-Y.
,
Zhuang
,
L.-X.
, and
Tong
,
B.-G.
, 1991, “
Analysis of Swimming Three-Dimensional Waving Plates
,”
J. Fluid Mech.
0022-1120,
232
, pp.
341
355
.
67.
Martin
,
C. B.
, 2001, “
Propulsive Performance of a Rolling and Pitching Wing
,” MS thesis, Massachusetts Institute of Technology.
68.
Martin
,
C. B.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, 2001, “
Propulsive Performance of a Rolling and Pitching Wing
,”
Proc. UUST
, Durham, NH.
69.
Kato
,
N.
, 1998, “
Locomotion by Mechanical Pectoral Fins
,”
J. Mar. Sci. Technol.
,
3
, pp.
113
121
.
70.
Kato
,
N.
, and
Inaba
,
T.
, 1997, “
Hovering Performance of Fish Robot With Apparatus o Pectoral Fin Motion
,”
10th Int. Symp. on Unmanned Untethered Submersible Technology
, University of New Hampshire.
71.
Kato
,
N.
, 2000, “
Control Performance of Fish Robot With Mechanical Pectoral Fins in Horizontal Plane
,”
IEEE J. Ocean. Eng.
0364-9059,
25
(
1
), pp.
121
129
.
72.
Walker
,
J. A.
, and
Westneat
,
M. W.
, 2000, “
Mechanical Performance of Aquatic Rowing and Flying
,”
Proc. R. Soc. London, Ser. B
0962-8452,
267
, pp.
1875
1881
.
73.
Culik
,
B. M.
,
Wilson
,
R. P.
, and
Bannasch
,
R.
, 1994, “
Underwater Swimming at Low Energetic Cost by Pygoscelid Penguins
,”
J. Exp. Biol.
0022-0949,
197
, pp.
65
78
.
74.
Bandyopadhyay
,
P.
,
Donnelly
,
M. J.
,
Nedderman
,
W. H.
, and
Castano
,
J. M.
, 1997b, “
A Dual Flapping Foil Maneuvering Device for Low-Speed Rigid Bodies
,”
Third Int. Symp. Performance Enhancement for Marine Vehicles
, Newport, RI.
75.
Czarnowski
,
J. T.
, 1997, “
Exploring the Possibility of Placing Traditional Marine Vessels Under Oscillating Foil Propulsion
,” SM thesis, Dept. Ocean Eng., Massachusetts Institute of Technology, Cambridge, MA.
76.
Tsuhara
,
M.
, and
Kimura
,
T.
, 1987, “
An Application of the Weis-Fogh Mechanism to Ship Propulsion
,”
ASME J. Fluids Eng.
0098-2202,
109
, pp.
107
13
.
77.
Weis-Fogh
,
T.
, 1973, “
Quick Estimates of Flight Fitness in Hovering Animals Including Novel Mechanisms for Lift Production
,”
J. Exp. Biol.
0022-0949,
59
, pp.
169
230
.
78.
Bandyopadhyay
,
P. R.
,
Castano
,
J. M.
,
Donnelly
,
M. J.
,
Nedderman
,
W. H.
, and
Donnelly
,
M. J.
, 2000, “
Experimental Simulation of Fish-Inspired Unsteady Vortex Dynamics on a Rigid Cylinder
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
219
238
.
79.
Webb
,
P. W.
, 1997, “
Designs for Stability and Maneuverability in Aquatic Vertebrates: What Can We Learn
,”
Proc. 10th Int. Symp. Unmanned Untethered Submersible Technology
, Durham, NH, pp.
86
108
.
80.
Webb
,
P. W.
, 2000, “
Maneuverability Versus Stability: Do Fish Perform Well in Both?
,”
Proc. 1st Int. Symp. On Aqua Bio-Mechanisms (ISBMEC 2000)
, Honolulu, Hawaii.
81.
Harper
,
D. G.
, and
Blake
,
R. W.
, 1991, “
Prey Capture and the Fast-Start Performance of Northern Pike (Esox Lucius)
,”
J. Exp. Biol.
0022-0949,
155
, pp.
175
192
.
82.
Frith
,
H. R.
, and
Blake
,
R. W.
, 1995, “
Mechanical Power Output and Hydrodynamical Efficiency of Northern Pike (Esox Lucius) Fast-Starts
,”
J. Exp. Biol.
0022-0949,
198
, pp.
1863
1873
.
83.
Triantafyllou
,
M. S.
,
Techet
,
A. H.
,
Zhu
,
Q.
,
Beal
,
D. N.
,
Hover
,
F. S.
, and
Yue
,
D. K. P.
, 2003, “
Vorticity Control in Fish-Like Propulsion and Maneuvering
,”
Integr. Comp. Biol.
1540-7063,
42
(
5
), pp.
1026
1031
.
84.
Read
,
D. A.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, 2003, “
Forces on Oscillating Foils for Propulsion and Maneuvering
,”
J. Fluids Struct.
0889-9746,
17
, pp.
163
183
.
85.
Kato
,
N.
, 1999, “
Hydrodynamic Characteristics of Mechanical Pectoral Fin
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
605
613
.
86.
Kato
,
N.
, 1999, “
Three-Motor-Driven Mechanical Pectoral Fin
,”
Proc. 11th Int. Symp. Unmanned Untethered Submersible Technology
, Durham, NH, pp.
467
476
.
87.
Hertel
,
H.
, 1966,
Structure Form and Movement
,
Reinhold
, New York.
88.
Flores
,
M. D.
, 2003, “
Flapping Motion of a Three-Dimensional Foil for Propulsion and Maneuvering of Underwater Vehicles
,” S.M. thesis, Dept. Ocean Engineering, MIT, Cambridge, MA.
89.
Triantafyllou
,
M. S.
,
Zhu
,
Q.
,
Techet
,
A. H.
, and
Yue
,
D. K. P.
, 2003, “
Scaling Law in Rapidly-Maneuvering Fish
,”
56th Annual Meeting, Division of Fluid Dynamics, American Physical Society
, East Rutherford, NJ.
90.
Daigh
,
S.
, and
Techet
,
A. H.
, 2003, “
Experimental Visualization of Rapidly Maneuvering Fish
,”
56th Annual Meeting, Division of Fluid Dynamics
, E. Rutherford, NJ.
91.
Gharib
,
M.
,
Rambod
,
E.
,
Dabiri
,
D.
, and
Hammache
,
M.
, 1994, “
Pulsatile Heart Flow: A Universal Time Scale
,”
Proc. 2nd Int. Conf. Experimental Fluid Mech.
,
M.
Onorato
, (ed.) Torino, Italy.
92.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
, 1998, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
0022-1120,
360
, pp.
121
140
.
93.
Rosenfeld
,
M.
,
Gharib
,
M.
, and
Rambod
,
E.
, 1998, “
Circular and Formation Number of Laminar Vortex Rings
,”
J. Fluid Mech.
0022-1120,
376
, pp.
297
318
.
94.
Isshiki
,
H.
, and
Murakami
,
M.
, 1984, “
A Theory of Wave Devouring Propulsion
,”
J. Soc. Naval Arch. Jpn
,
156
, pp.
102
114
.
95.
Sparenberg
,
J. A.
, and
Wiersma
,
A. K.
, 1975, “
On the Efficiency Increasing Interaction of Thrust Producing Lifting Surfaces
,” in
Swimming and Flying in Nature
, Plenum Press,
T.
Wu
,
C. J.
Brokaw
, and
C.
Brennen
, (eds.) Vol.
2
, pp.
891
917
.
96.
Koochesfahani
,
M.
, and
Dimotakis
,
P.
, 1998, “
A Cancellation Experiment in a Forced Turbulent Shear Layer
,” AIAA Technical Paper 88-3713-CP.
97.
Gopalkrishnan
,
R.
,
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Barrett
,
D. S.
, 1994, “
Active Vorticity Control in a Shear Flow Using a Flapping Foil
,”
J. Fluid Mech.
0022-1120,
274
, pp.
1
21
.
98.
Beal
,
D. N.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, 2001, “
The Effect on Thrust and Efficiency of an Upstream Karman Wake on an Oscillating Foil
,”
Proc. UUST
, Durham, NH.
99.
Liao
,
J. C.
,
Beal
,
D. N.
,
Lauder
,
G. V.
, and
Triantafyllou
,
M. S.
, 2003, “
The Karman Gait: Novel Body Kinematics of Rainbow Trout Swimming in a Vortex Street
,”
J. Exp. Biol.
0022-0949,
206
, pp.
1059
1073
.
100.
Liao
,
J. C.
,
Beal
,
D. N.
,
Lauder
,
G. V.
,
Triantafyllou
,
M. S.
, 2003, “
Fish Exploiting Vortices Use Less Muscle
,”
Science
0036-8075,
302
, pp.
1566
1569
.
101.
Hoerner
,
S. F.
, 1965,
Fluid Dynamic Drag
(published by the author).
102.
Bose
,
N.
, 1995, “
Performance of Chordwise Flexible Oscillating Propulsors Using A Time-Domain Panel Method
,”
Int. Shipbuild. Progr.
,
42
(
432
), pp.
281
294
.
103.
Castelo
,
M. E.
, 2002, “
Propulsive Performance of Flexible-Chord Foils
,” B.S. thesis, Department of Ocean Engineering, MIT.
104.
Prempraneerach
,
P.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, 2003, “
The Effect of Chordwise Flexibility on the Thrust and Efficiency of a of Flapping Foil
Proceedings Unmanned, Untethered Submersible Technology
, Durham, NH, Aug.
105.
Liu
,
P.
, and
Bose
,
N.
, 1997, “
Propulsive Performance From Oscillating Propulsors With Spanwise Flexibility
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
1763
1770
.
106.
Katz
,
J.
, and
Weihs
,
D.
, 1979, “
Large Amplitude Unsteady Motion of a Flexible Slender Propulsor
,”
J. Fluid Mech.
0022-1120,
90
, pp.
713
723
.
107.
McCutchen
,
C. W.
, 1970, “
The Trout Tail Fin: A Self-Cambering Hydrofoil
,”
J. Biomech.
0021-9290,
3
,
271
281
.
108.
Combs
,
S. A.
, and
Daniel
,
T. L.
, 2001, “
Shape, Flapping and Flexion: Wing and Fin Design for Forward Flight
,”
J. Exp. Biol.
0022-0949,
204
, pp.
2073
2085
.
109.
Alexander
,
R. McN.
, 2003,
Principles of Animal Locomotion
,
Princeton University Press
, Princeton, N. J.
110.
Blake
,
R. W.
, 1983,
Fish Locomotion
,
Cambridge University Press
, London.
111.
Clark
,
B. D.
, and
Bemis
,
W.
, 1979, “
Kinematics of Swimming of Penguins at the Detroit Zoo
,”
J. Zool.
0022-5460,
188
, pp.
411
428
.
112.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
, 1995, “
An Efficient Swimming Machine
,”
Sci. Am.
0036-8733,
272
(
3
), pp.
64
70
.
113.
Kumph
,
J.
, and
Triantafyllou
,
M. S.
, 1998, “
A Fast-Starting and Maneuvering Vehicle, the Robopike
,”
Proc. Int. Symp. Seawater Drag Reduction
, Newport, RI.
114.
Techet
,
A. H.
, 2001, “
Experimental Visualization of the Near-Boundary Hydrodynamics About Fish-Like Swimming Bodies
,” Ph.D. thesis, MIT, Cambridge, MA.
115.
Techet
,
A. H.
,
Anderson
,
E. J.
,
McGillis
,
W. R.
,
Grosenbaugh
,
M. A.
, and
Triantafyllou
,
M. S.
, 1999, “
Flow Visualization of Swimming Robotic Fish in the Near Boundary Region
,”
Third Int. Workshop on Particle Image Velocimetry
, Santa Barbara, CA, September
16
18
, 1999.
116.
Taneda
,
S.
, 1977, “
Visual Study of Unsteady Separated Flows Around Bodies
,”
Prog. Aerosp. Sci.
0376-0421,
17
, pp.
287
348
.
117.
Shen
,
L.
,
Zhang
,
X.
,
Yue
,
D. K. P.
, and
Triantafyllou
,
M. S.
, 2003, “
Turbulent Flow Over a Flexible Wall Undergoing a Streamwise Traveling Wavy Motion
,”
J. Fluid Mech.
0022-1120,
484
, pp.
197
221
.
You do not currently have access to this content.