Abstract

A survey is provided of the various constitutive models that have been used to study the phenomena of wave propagation in soils. While different material models have been proposed for the response of soils, it is now generally understood that no single model may be used over the entire range of pressures which are typically studied. The constitutive models reviewed in this paper include a number of effective stress and multiphase models, the volume distribution function model, and various versions of the Pα model. Also discussed are classical elastic-plastic models, models possessing different elastic constants in loading and unloading, variable modulus models, and capped elastic-plastic models.

1.
Nelson
,
I.
,
Baron
,
M. L.
, and
Sandler
,
I.
, 1971, “
Mathematical Models for Geological Materials for Wave-Propagation Studies
,”
Shock Waves and the Mechanical Properties of Solids
,
J. J.
Burke
and
V.
Weiss
, eds.,
Syracuse University Press
,
Syracuse
, pp.
289
351
.
2.
Merkle
,
D. H.
, and
Dass
,
W. C.
, 1985, “
Fundamental Properties of Soils for Complex Dynamic Loadings
,” AFOSR Report No. TR-85-1232.
3.
Bloom
,
F.
, 2006, “
Wave Propagation in Partially Saturated Soils
,”
Appl. Mech. Rev.
, accepted for publication.
4.
Kim
,
K.
,
Blouin
,
S.
,
Chitty
,
D.
, and
Merkle
,
D.
, 1988, “
Experimental and Theoretical Response of Multiphase Porous Media to Dynamic Loads
,” AFOSR Report No. TR-88-1004.
5.
Nikolaevski
,
V. N.
, 1982, “
On Static and Dynamic Response of Geomaterials
,”
Proc. IUTAM Conference on Deformation and Failure of Granular Materials
,
Delft
,
Elsevier
,
Amsterdam
.
6.
Nikolaevski
,
V. N.
, 1971, “
Governing Equations of Plastic Deformation of a Granular Medium
,”
J. Appl. Math. Mech.
0021-8928,
35
, pp.
1019
1029
.
7.
Nikolaevski
,
V. N.
,
Syrnikov
,
N.
, and
Shefter
,
G.
, 1975, “
Dynamics of Elasto-Plastic Dilatating Media
,”
Advances in Mechanics of Solids
(
Nauka
,
Moscow, Galerkin Vol.
), pp.
397
413
.
8.
Houlsby
,
G. T.
, 1993, “
Interpretation of Dilation as a Kinematical Constraint
,”
Modern Approaches to Plasticity
,
D.
Kolymbus
, ed.,
Elsevier
,
New York
, pp.
19
36
.
9.
Houlsby
,
G. T.
, 1991, “
How the Dilatancy of Soils Affects Their Behavior
,”
Proc. 10th Eur. Conf. Soil Mech. Found. Eng.
,
Associazione Geotecnica Italiana
,
Florence, Italy
, Vol.
4
, pp.
1189
1202
.
10.
Kanatani
,
K. I.
, 1982, “
Macroscopic and Microscopic Descriptions of the Mechanics of Granular Materials
,”
Deformation and Failure of Granular Materials, Proc. IUTAM Conf.
,
Delft
,
P. A.
Vermeer
and
H. J.
Luger
, eds,
Elsevier
,
Amsterdam
, pp.
273
284
.
11.
Kanatani
,
K. I.
, 1982, “
A Plasticity Theory for the Kinematics of Ideal Granular Materials
,”
Int. J. Eng. Sci.
0020-7225,
20
, pp.
1
13
.
12.
Dass
,
W.
,
Bratton
,
J.
, and
Higgins
,
C.
, 1982, “
Fundamental Properties of Soils for Complex Dynamic Loadings
,” AFOSR Report No. TR-82-0101.
13.
McTigue
,
D. F.
, and
Passman
,
S. L.
, 1982, “
The Effective Stress Principle and Mixture Theory
,” preprint.
14.
McTique
,
D. F.
,
Wilson
,
R. K.
, and
Nunziato
,
J. W.
, 1982, “
An Effective Stress Principle for Partially Saturated Granular Media
,”
Mechanics of Granular Materials: New Models and Constitutive Relations
,
J. T.
Jenkins
and
M.
Satake
, eds.,
Elsevier
,
Amsterdam
, pp.
195
210
.
15.
Raats
,
P. A. C.
, 1968, “
Forces Acting on the Solid Phase of a Porous Medium
,”
Z. Angew. Math. Phys.
0044-2275,
19
, pp.
606
613
.
16.
Kansa
,
E. J.
, 1982, “
The Response of Shocks in Unsaturated Geological Media Under a Wide Range of Permeabilities
,” preprint, Lawrence Livermore National Laboratory.
17.
Swift
,
R. P.
, and
Burton
,
D. E.
, 1984, UCRL-53568, LLNL.
18.
Walker
,
R. E.
, and
Lofton
,
S.
, 1994, “
Ground Shock Attenuation in Three Phase Earth Materials
,”
Workshop on Constitutive Modeling of Air and Water Saturated Sand for Shock Propagation Prediction
, US Naval Research Lab., Washington, DC.
19.
Ahrens
,
T. J.
, 1988, “
Equation of State of Earth Media
,” Report to the Defense Nuclear Agency, Report No. DNA-TR-88-265, Washington, DC.
20.
Foster
,
A. N.
, 1977, “
Fluid Wave Propagation in Saturated and Nearly Saturated Sands
,” Ph.D. thesis, University of Michigan.
21.
Bakanova
,
S.
, 1976, “
Thermodynamic Properties of Water at High Pressures and Temperatures
,”
Sov. Phys. JETP
0038-5646,
41
, pp.
544
571
.
22.
Goodman
,
M. A.
, and
Cowin
,
S. C.
, 1972, “
A Continuum Theory for Granular Materials
,”
Arch. Ration. Mech. Anal.
0003-9527,
44
, pp.
249
266
.
23.
Cowin
,
S. C.
, 1972, “
Themodynamic Model for Porous Materials With Vacuous Pores
,”
J. Appl. Phys.
0021-8979,
43
, pp.
2495
2497
.
24.
Cowin
,
S. C.
, and
Goodman
,
M. A.
, 1976, “
A Variational Principle for Granular Materials
,”
Z. Angew. Math. Mech.
0044-2267,
56
, pp.
281
286
.
25.
Nunziato
,
J. W.
, and
Walsh
,
E. K.
, 1977, “
On the Influence of Void Compaction and Material Non-Uniformity on the Propagation of One-Dimensional Acceleration Waves in Granular Materials
,”
Arch. Ration. Mech. Anal.
0003-9527,
64
, pp.
299
316
.
26.
Nunziato
,
J. W.
, and
Walsh
,
E. K.
, 1977, “
Small-Amplitude Wave Behavior in One-Dimensional Granular Solids
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
559
564
.
27.
Carroll
,
M. M.
, and
Holt
,
A. C.
, 1972, “
Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials
,”
J. Appl. Phys.
0021-8979,
43
, pp.
1626
1636
.
28.
Nunziato
,
J. W.
, and
Walsh
,
E. K.
, 1978, “
One-Dimensional Shock Waves in Uniformly Distributed Granular Materials
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
681
689
.
29.
Cowin
,
S. C.
, and
Nunziato
,
J. W.
, 1981, “
Waves of Dilatancy in a Granular Material With Incompressible Granules
,”
Int. J. Eng. Sci.
0020-7225,
19
, pp.
993
1008
.
30.
Nunziato
,
J. W.
, and
Herrmann
,
W.
, 1972, “
The General Theory of Shock Waves in Elastic Nonconductors
,”
Arch. Ration. Mech. Anal.
0003-9527,
47
, pp.
272
287
.
31.
Chen
,
P. J.
, and
Gurtin
,
M. E.
, 1971, “
The Growth of One-Dimensional Shock Waves in Elastic Nonconductors
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
5
10
.
32.
Nunziato
,
J. W.
, and
Yarrington
,
P.
, 1977, “
A Continuum Theory of Porous Materials With Applications to Wave Propagation Calculations
,”
Symposium on Applications of Computer Methods in Engineering
, University of Southern California,
L. C.
Welford
, ed.
33.
Hermann
,
W.
, 1965, “
Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials
,”
J. Appl. Phys.
0021-8979,
40
, pp.
2490
2499
.
34.
Butcher
,
B. M.
, 1971, “
The Description of Strain-Rate Effects in Shocked Porous Materials
,”
Shock Waves and the Mechanical Properties of Solids
,
J. J.
Burke
and
V.
Weiss
, eds.,
Syracuse University Press
,
Syracuse
, pp.
227
244
.
35.
Drucker
,
D. C.
, and
Prager
,
W.
, 1952, “
Soil Mechanics and Plastic Analysis of Limit Design
,”
Q. Appl. Math.
0033-569X,
10
, pp.
157
165
.
36.
Grigorian
,
S S.
, 1980, “
On Basic Notions of Soil Dynamics
,” (in Russian),
Prikl. Mat. Mekh.
0032-8235,
24
, pp.
6
23
.
37.
Kaliski
,
S.
, and
Osiecka
,
J.
, 1951, “
Unloading Wave for a Body With Rigid Unloading Characteristics
,”
Proc. Vib. Probl.
0032-9576
1
, pp.
1
17
.
38.
Nowacki
,
W. K.
, 1978,
Stress Waves in Non-Elastic Solids
,
Pergamon Press
,
London
.
39.
Lyakhov
,
G. M.
, 1959, “
Shock Waves in Multicomponent Media
,”
Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl.
,
1
.
40.
Lyakhov
,
G. M.
, 1974,
Principles of the Dynamics of Detonation Waves in Soils and Rocks
,
Nedra
,
Moscow
.
41.
Rakhmatulin
,
K. A.
, 1969, “
Wave Propagation in Multicomponent Media
,”
Prikl. Mat. Mekh.
0032-8235,
33
, pp.
598
601
.
42.
Lyakhov
,
G. M.
, and
Okhitin
,
V. N.
, 1974, “
Spherical Explosion Waves in Multicomponent Media
,”
Prikl. Mekh. Tekh. Fiz.
0044-4626,
2
, pp.
75
84
.
43.
Krivtsov
,
V. A.
, 1974, “
Equation of the Compression of Water-Saturated Sand and the Limit of its Applicability
,”
Prikl. Mekh. Tekh. Fiz.
0044-4626,
4
, pp.
576
579
.
44.
Nowacki
,
W. K.
, and
Raniecki
,
B.
, 1987, “
Theoretical Analysis of Dynamic Compacting of Soil Around a Spherical Source of Explosion
,”
Arch. Mech.
0373-2029,
39
, pp.
359
384
.
45.
Wlodarczyk
,
E.
, 1987, “
Concentrated Explosion in Water Saturated Soil, Part I. Analytic Solution of the Problem
,”
J. Tech. Phys.
0324-8313,
28
, pp.
221
241
.
46.
Nowacki
,
W. K.
, and
Guelin
,
P.
, 1993, “
Dynamic Compacting of Soils
,”
Modern Approaches to Plasticity
,
D.
Kolymbas
, ed.,
Elsevier
,
New York
, pp.
671
689
.
47.
Guelin
,
P.
, and
Nowacki
,
W. K.
, 1992, “
Stress Waves in Elastic-Plastic Solids With Discrete Memory
,”
J. Tech. Phys.
0324-8313,
33
, pp.
167
204
.
48.
Mandel
,
J.
, 1974,
Introduction à la Mécanique des Milieux Continus Déformables
,
PWN
,
Warsaw
.
49.
Reynolds
,
O.
, 1885, “
On the Dilatancy of Media Composed of Rigid Particles in Contact
,”
Philos. Mag.
0031-8086,
5
, pp.
469
481
.
50.
Rodionov
,
V. N.
,
Adushkin
,
V. V.
,
Kostuchenko
,
V. N.
,
Nikolaevski
,
V. N.
,
Romashov
,
A. N.
, and
Zvetkov
,
V. M.
, 1971,
Mechanical Effects of Underground Explosions
,
Nedra
,
Moscow
.
51.
Ziegler
,
H.
, 1977,
An Introduction to Thermomechanics
,
North-Holland
,
Amsterdam
.
52.
Kanatani
,
K. I.
, 1982, “
Macroscopic and Microscopic Descriptions of the Mechanics of Granular Materials
,”
Deformation and Failure of Granular Materials, Proc. IUTAM Conf.
,
Delft
,
P. A.
Vermeer
and
H. J.
Luger
, eds.,
Elsevier
,
Amsterdam
, pp.
273
284
.
53.
Kanatani
,
K. I.
, 1982, “
Dilatant Plastic Deformation of Granular Materials
,”
Int. J. Eng. Sci.
0020-7225,
20
, pp.
879
884
.
54.
Truesdell
,
C.
, and
Noll
,
W.
, 1965, “
The Nonlinear Field Theories of Mechanics
,”
Handbuch der Physik III/3
,
Springer-Verlag
,
Berlin
.
55.
Drucker
,
D. C.
, 1953, “
Limit Analysis of Two and Three Dimensional Soil Mechanics Problems
,”
J. Mech. Phys. Solids
0022-5096,
1
, pp.
217
226
.
56.
Roscoe
,
K. H.
,
Shofield
,
A. N.
, and
Wroth
,
C. P.
, 1958, “
On the Yielding of Soils
,”
Geotechnique
0016-8505,
8
, pp.
22
53
.
57.
Nemat-Nasser
,
S.
, and
Shokooh
,
A.
, 1980, “
On Finite Plastic Flows of Compressible Materials With Internal Friction
,”
Int. J. Solids Struct.
0020-7683,
16
, pp.
495
514
.
58.
Goodman
,
M. A.
, and
Cowin
,
S. C.
, 1972, “
A Continuum Theory for Granular Materials
,”
Arch. Ration. Mech. Anal.
0003-9527,
44
, pp.
249
266
.
59.
Corapcioglu
,
M. Y.
, 1989, “
Wave Propagation in Porous Media: A Review
,”
Transport Processes in Porous Media
,
J.
Bear
and
M. Y.
Corapcioglu
, eds.,
Reidel
,
Dordrecht
.
60.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
, pp.
155
164
.
61.
Biot
,
M. A.
1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid
,”
J. Acoust. Soc. Am.
0001-4966,
28
, pp.
168
191
.
62.
Ogushwitz
,
P. K.
, 1985, “
Applicability of the Biot Theory: I. Low Porosity Materials, II. Suspensions, III. Wave Speeds Versus Depth in Marine Sediments
,”
J. Acoust. Soc. Am.
0001-4966,
77
, pp.
429
464
.
63.
Stoll
,
R. D.
, 1977, “
Acoustic Waves in Ocean Sediments
,”
Geophysics
0016-8033,
42
, pp.
751
725
.
64.
Stoll
,
R. D.
, and
Bryan
,
G. M.
, 1970, “
Wave Attenuation in Saturated Sediments
,”
J. Acoust. Soc. Am.
0001-4966,
47
, pp.
1440
1447
.
65.
Bear
,
J.
, 1972,
Dynamics of Fluids in Porous Media
,
Elsevier
,
New York
.
66.
Bear
,
J.
, and
Bachmat
,
Y.
, 1984, “
Transport Pheomena in Porous Media-Basic Equations
,”
Fundamentals of Transport Pheonomena in Porous Media
,
J.
Bear
and
M. Y.
Corapcioglu
, eds.,
Martinus Nijhoff
,
Dordrecht
, pp.
3
61
.
67.
Verruijt
,
A.
, 1984, “
The Theory of Consolidation, Fundamentals of Transport Phenomena in Porous Media
,”
J.
Bear
and
M. Y.
Corapcioglu
, eds.,
Martinas Nijhoff
,
Dordrecht
, pp.
349
368
.
68.
Zienkiewicz
,
O. D.
, and
Bettess
,
P.
, 1982, “
Soils and Other Saturated Media Under Transient, Dynamic Conditions: General Formulation, and the Validity of Various Simplifying Assumptions
,”
Soil Mechanics, Transient and Cyclic Loads
,
G. N.
Pande
and
O. C.
Zienkiewicz
, eds.,
Wiley
,
New York
, pp.
1
16
.
69.
Brinkman
,
A. C.
, 1948, “
On the Permeability of Media Consisting of Closely Packed Porous Particles
,”
Appl. Sci. Res., Sect. A
0365-7132,
1
, pp.
81
86
.
70.
Ishihara
,
K.
, 1965, “
Theory of Consolidation of a Porous Material With Heat Effect Based on the Irreversible Thermodynamics
,”
Trans. Jpn. Soc. Civ. Eng.
0385-5406,
113
,
28
42
.
71.
Nagumo
,
S.
, 1965, “
Effect of Pore Structure for Deformation and Failure of Porous Media
,”
Bull. Earthquake Res. Inst., Univ. Tokyo
,
43
.
72.
Biot
,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid
,”
J. Acoust. Soc. Am.
0001-4966,
28
, pp.
168
178
.
You do not currently have access to this content.