Abstract

The ductile fracture of many materials is related to the nucleation, growth, and coalescence of voids. Also, a material containing voids represents an extreme case of heterogeneous materials. In the last few decades, numerous studies have been devoted to the local deformation mechanisms and macroscopic overall properties of nonlinear materials containing voids. This article presents a critical review of the studies in three interconnected topics in nonlinear mechanics of materials containing isolated voids, namely, the growth of an isolated void in an infinite medium under a remote stress; the macroscopic mechanical behavior of these materials predicted by using a cell model; and bounds and estimates of the overall properties of these materials as a special case of nonlinear composite materials. Emphasis are placed upon analytical and semianalytical approaches for static loading conditions. Both the classical methods and more recent approaches are examined, and some inadequacies in the existing methods are pointed out. In addition to the critical review of the existing methods and results, some new results, including a power-law stress potential for compressible nonlinear materials, are presented and integrated into the pertinent theoretical frameworks. This review article contains 118 references.

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
2.
Adler
,
P. M.
, and
Thovert
,
J.-F.
, 1998, “
Real Porous Media: Local Geometry and Macroscopic Properties
,”
Appl. Mech. Rev.
0003-6900,
51
, pp.
537
585
.
3.
Roberts
,
A. P.
, and
Garboczi
,
E. J.
, 2002, “
Computation of the Linear Elastic Properties of Random Porous Materials With a Wide Variety of Microstructure
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
1033
1054
.
4.
Dormieux
,
L.
,
Molinari
,
A.
, and
Kondo
,
D.
, 2002, “
Micromechanical Approach to the Behavior of Poroelastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
2203
2231
.
5.
Biot
,
M. A.
, 1973, “
Nonlinear and Semilinear Rheology of Porous Solids
,”
J. Geophys. Res.
0148-0227,
78
, pp.
4924
4937
.
6.
Coussy
,
O.
, 1995,
Mechanics of Porous Continua
,
Wiley
,
Chichester, UK
.
7.
de Boer
,
R.
, 1996, “
Highlights in the Historical Development of the Porous Media Theory: Toward a Consistent Macroscopic Theory
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
201
262
.
8.
de Boer
,
R.
, 2000, “
Contemporary Progress in Porous Media Theory
,”
Appl. Mech. Rev.
0003-6900,
53
, pp.
323
370
.
9.
de Boer
,
R.
, 2001,
Theory of Porous Media: Highlights in the Historical Development and Current State
,
Springer-Verlag
,
Berlin
.
10.
Adler
,
P. M.
, 1992,
Porous Media: Geometry and Transports
,
Butterworth-Heinemann
,
Stoneham, MA
.
11.
Ponte Castaneda
,
P.
, and
Suquet
,
P.
, 1998, “
Nonlinear Composites
,”
Adv. Appl. Mech.
0065-2156,
34
, pp.
170
302
.
12.
Hill
,
R.
, 1948, “
A Variational Principle of Maximum Plastic Work in Classical Plasticity
,”
Q. J. Mech. Appl. Math.
0033-5614,
1
, pp.
18
28
.
13.
McClintock
,
F. A.
, 1968, “
A Criterion for Ductile Fracture by Growth of Holes
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
363
371
.
14.
Berg
,
C. A.
, 1962, “
The Motion of Cracks in Plane Viscous Deformation
,”
Proc. Fourth U.S. National Congress of Applied Mechanics
,
R. M.
Rosenberg
, ed., Berkeley, June, pp.
885
892
.
15.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1969, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
201
217
.
16.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Slutsky
,
S.
, 1982, “
Void Growth and Collapse in Viscous Solids
,”
Mechanics of Solids, The Rodney Hill 60th Anniversary Volume
,
H. G.
Hopkins
and
M. J.
Sewell
, eds.,
Pergamon Press
,
Oxford
, pp.
13
45
.
17.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1986, “
Void Growth in Shear
,”
Proc. R. Soc. London, Ser. A
1364-5021,
407
, pp.
435
458
.
18.
Pan
,
K. L.
,
Haung
,
Z. P.
, and
Ji
,
X.
, 1995, “
Elliptical Void Growth in Shear
,”
Proc. R. Soc. London, Ser. A
1364-5021,
451
, pp.
553
570
.
19.
Huang
,
Y.
, 1991, “
Accurate Dilatation Rates for Spherical Voids in Triaxial Stress Fields
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
1084
1085
.
20.
Liu
,
B.
,
Qiu
,
X.
,
Huang
,
Y.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Liu
,
C.
, 2003, “
The Size Effect on Void Growth in Ductile Materials
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
1171
1187
.
21.
Ortiz
,
M.
, and
Molinari
,
A.
, 1992, “
Effect of Strain Hardening and Rate Sensitivity on the Dynamic Growth of a Void in a Plastic Material
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
48
53
.
22.
Klöcker
,
H.
, and
Montheillet
,
F.
, 1991, “
Influence of Flow Rule and Inertia on the Ductile Growth of Voids
,”
Nucl. Eng. Des.
0029-5493,
125
, pp.
274
281
.
23.
Duva
,
J. M.
, and
Hutchinson
,
J. W.
, 1984, “
Constitutive Potentials for Dilutely Voided Nonlinear Materials
,”
Mech. Mater.
0167-6636,
3
, pp.
41
54
.
24.
Haghi
,
M.
, and
Anand
,
L.
, 1992, “
A Constitutive Model for Isotropic Porous Elastic-Viscoplastic Metals
,”
Mech. Mater.
0167-6636,
13
, pp.
37
53
.
25.
Lee
,
B. J.
, and
Mear
,
M. E.
, 1992, “
Axisymmetric Deformation of Power-Law Solids Containing a Dilute Concentration of Aligned Spheroided Voids
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
1805
1836
.
26.
Lee
,
B. J.
, and
Mear
,
M. E.
, 1992, “
Effective Properties of Power-Law Solids Containing Elliptical Inhomogeneities—Part II: Voids
,”
Mech. Mater.
0167-6636,
13
, pp.
337
356
.
27.
Gilormini
,
P.
,
Licht
,
C.
, and
Suquet
,
P.
, 1988, “
Growth of Voids in a Ductile Matrix: A Review
,”
Arch. Mech.
0373-2029,
40
, pp.
43
80
.
28.
Huang
,
Z. P.
, and
Liu
,
Y.
, 1998, “
On the Growth Rate of an Elliptic-Cylindric Void in Power-Law Viscous Solids
,”
Proc 3rd International Conference on Nonlinear Mechanics
,
W. Z.
Chien
, ed.,
Shanghai University Press
,
Shanghai
, pp.
248
251
.
29.
Aboudi
,
J.
, 1991,
Mechanics of Composite Materials—A Unified Micromechanical Approach
,
Elsevier
,
Amsterdam
.
30.
Hashin
,
Z.
, 1983, “
Analysis of Composite Materials-A Survey
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
481
505
.
31.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
, 2nd rev. ed.,
Elsevier Science
,
Amsterdam
.
32.
Needleman
,
A.
, 1972, “
Void Growth in an Elastic-Plastic Medium
,”
ASME J. Appl. Mech.
0021-8936,
39
, pp.
964
970
.
33.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
, pp.
2
15
.
34.
Cocks
,
A. F. C.
, 1989, “
Inelastic Deformation of Porous Materials
,”
J. Mech. Phys. Solids
0022-5096,
37
, pp.
693
715
.
35.
Hashin
,
Z.
, 1962, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
0021-8936,
29
, pp.
143
150
.
36.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
127
140
.
37.
Huang
,
Z. P.
,
Sun
,
L.
, and
Hu
,
G. K.
, 2003, “
The Effective Shear Modulus of a Porous Material Based on Hashin Composite Sphere
,”
Mechanical Properties of Advanced Engineering Materials—Proc IMMM2003
,
B.
Xu
,
M.
Tokuda
, and
G.
Sun
, eds.,
Tsinghua University Press and Springer-Verlag
,
Beijing
, pp.
93
98
.
38.
Bilger
,
N.
,
Auslender
,
F.
,
Bornert
,
M.
, and
Masson
,
R.
, 2002, “
New Bounds and Estimates for Porous Media With Rigid Perfectly Plastic Matrix
,”
C. R. Mec.
1631-0721,
330
, pp.
127
132
.
39.
Tvergaard
,
V.
, 1990, “
Material Failure by Void Growth to Coalescence
,”
Advances in Applied Mechanics
,
J. W.
Hutchison
and
T. Y.
Wu
, eds.,
Academic
,
San Diego
, Vol.
27
, pp.
83
151
.
40.
Tvergaard
,
V.
, 1981, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
0376-9429,
17
, pp.
389
407
.
41.
Tvergaard
,
V.
, 1982, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
0376-9429,
18
, pp.
237
252
.
42.
Richmond
,
O.
, and
Smelser
,
R. E.
, 1985, Alcoa Technical Center memorandum.
43.
Hom
,
C. L.
, and
McMeeking
,
R. M.
, 1989, “
Void Growth in Elastic-Plastic Materials
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
309
317
.
44.
Tvergaard
,
V.
, and
Needleman
,
A.
, 1984, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
0001-6160,
32
, pp.
157
169
.
45.
Huang
,
Z. P.
,
Li
,
H. L.
, and
Wang
,
R.
, 1994, “
On the Critical Value of Void Volume Fraction in Elastic-Plastic Solids
,”
Proc 2nd Asia-Pacific Sym on Advances in Eng Plasticity and Its Application
,
B.
Xu
and
W.
Yang
, eds.,
International Academic Publisher
,
Beijing
, pp.
121
128
.
46.
Thomason
,
P. F.
, 1990,
Ductile Fracture of Metals
,
Pergamon Press
,
Oxford, UK
.
47.
Ning
,
J. G.
, and
Huang
,
Z. P.
, 1998, “
Critical Conditions of Coalescence Between Microvoids in Perfectly Plastic Materials
,”
Proc 3rd Int Conference on Nonlinear Mechanics
, Shanghai,
W. Z.
Chien
, ed.,
Shanghai University Press
,
Shanghai
, pp.
317
321
.
48.
Ning
,
J. G.
,
Huang
,
Z. P.
, and
Hao
,
J. F.
, 2000, “
The Localized Internal Necking Process Between Microvoids in a Plastic Solids
,”
Key Eng. Mater.
1013-9826,
177–180
, pp.
381
386
.
49.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
, 1997, “
Recent Extensions of Gurson’s Model for Porous Ductile Metals
,”
Continuum Micromechanics, CISM Courses and Lectures, 377
,
P.
Suquet
, ed.,
Springer-Verlag
,
New York
.
50.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
, 2000, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
2467
2512
.
51.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
, 2001a, “
Theoretical Models for Void Coalescence in Porous Ductile Solids I: Coalescence in Layer
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5581
5594
.
52.
Gologanu
,
M.
,
Leblond
,
J.-B.
, and
Devaux
,
J.
, 2001b, “
Theoretical Models for Void Coalescence in Porous Ductile Solids II: Coalescence in Columns
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5595
5604
.
53.
Mear
,
M. E.
and
Hutchinson
,
J. W.
, 1985, “
Influence of Yield Surface Curvature on Flow Localization in Dilatant Plasticity
,”
Mech. Mater.
0167-6636,
4
, pp.
395
407
.
54.
Tvergaard
,
V.
, 1987, “
Effect of Yield Surface Curvature and Void Nucleation on Plastic Flow Localization
,”
J. Mech. Phys. Solids
0022-5096,
35
, pp.
43
60
.
55.
Pan
,
J.
,
Saje
,
M.
, and
Needleman
,
A.
, 1983, “
Localization of Deformation in Rate Sensitive Porous Plastic Solids
,”
Int. J. Fract.
0376-9429,
21
, pp.
261
278
.
56.
Licht
,
C.
, and
Suquet
,
P.
, 1988, “
Growth of Cylindrical Voids in Nonlinear Viscous Material at Arbitrary Void Volume Fractions: A Simple Model
,”
Arch. Mech.
0373-2029,
40
, pp.
741
757
.
57.
Pan
,
K. L.
, and
Huang
,
Z. P.
, 1994, “
A Cylindrical Void Growth Model in Visco-Plastic Materials
,”
Int. J. Damage Mech.
1056-7895,
3
, pp.
87
106
.
58.
Sun
,
L. Z.
, and
Huang
,
Z. P.
, 1992, “
Dynamic Void Growth in Rate-Sensitive Plastic Solids
,”
Int. J. Plast.
0749-6419,
8
, pp.
903
924
.
59.
Cowper
,
G. R.
, and
Symonds
,
P. S.
, 1957, “
Strain Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams
,”
Division of Applied Mathematics Report
,
Brown University
, No. 28.
60.
Huang
,
Z. P.
,
Yang
,
L. M.
, and
Pan
,
K. L.
, 1994, “
Dynamic Void Growth Models in Ductile Materials
,”
Proc IUTAM Sym on Impact Dynamics
,
Z. M.
Zheng
and
Q. M.
Tan
, eds.,
Peking University Press
, Beijing, pp.
310
322
.
61.
Koplik
,
J.
, and
Needleman
,
A.
, 1988, “
Void Growth and Coalescence in Porous Plastic Solids
,”
Int. J. Solids Struct.
0020-7683,
24
, pp.
835
853
.
62.
Perrin
,
G.
, and
Leblond
,
J.-B.
, 2000, “
Accelerated Void Growth in Porous Ductile Solids Containing Two Populations of Cavities
,”
Int. J. Plast.
0749-6419,
16
, pp.
91
120
.
63.
Carroll
,
M. M.
, and
Holt
,
A. C.
, 1972, “
Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials
,”
J. Appl. Phys.
0021-8979,
43
, pp.
1626
1636
.
64.
Cortes
,
R.
, 1992, “
The Growth of Microvoids Under Intense Dynamic Loading
,”
Int. J. Solids Struct.
0020-7683,
29
, pp.
1339
1350
.
65.
Huo
,
B.
,
Zheng
,
Q.-S.
, and
Huang
,
Y.
, 1999, “
A Note on the Effect of Surface Energy and Void Size to Void Growth
,”
Eur. J. Mech. A/Solids
0997-7538,
18
, pp.
987
994
.
66.
Li
,
Z.
,
Huang
,
M.
, and
Wang
,
C.
, 2003, “
Scale-Dependent Plasticity Potential of Porous Materials and Void Growth
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3935
3954
.
67.
Michel
,
J. C.
, and
Suquet
,
P.
, 1992, “
The Constitutive Law of Nonlinear Viscous and Porous Materials
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
783
812
.
68.
Ponte Castaneda
,
P.
, 1991, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
45
71
.
69.
Suquet
,
P.
, 1993, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
981
1002
.
70.
Talbot
,
D.
, and
Willis
,
J. R.
, 1994, “
Upper and Lower Bounds for the Overall Properties of a Nonlinear Composite Dielectric I: Random Microgeometry
,”
Proc. R. Soc. London, Ser. A
1364-5021,
447
, pp.
365
384
.
71.
Liu
,
Y.
, 1998, “
On the Void Growth in Power-Law Matrixes and the Nonlinear Constitutive Relations of Porous Materials
,” Master thesis, Perking University.
72.
Liu
,
Y.
, and
Huang
,
Z. P.
, 2003, “
Macroscopic Strain Potentials in Nonlinear Porous Materials
,”
Acta Mech. Sin.
0459-1879,
19
, pp.
52
58
.
73.
Huang
,
Z. P.
,
Yuan
,
X.
,
Wang
,
R.
, and
Ning
,
J. G.
, 1996, “
Dynamic Yield Loci of a Porous Visco-Plastic Material by Using a Lower Bound Approach
,”
Proc IUTAM Sym on Constitutive Relation in High/Very High Strain Rates
,
K.
Kawata
and
J.
Shioiri
, eds.,
Springer
,
Tokyo
, pp.
155
162
.
74.
Ponte Castaneda
,
P.
, 1992, “
New Variational Principles in Plasticity and their Application to Composite Materials
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
1757
1788
.
75.
Wang
,
Z. P.
, 1997, “
Void-Containing Nonlinear Materials Subject to High-Rate Loading
,”
J. Appl. Phys.
0021-8979,
81
, pp.
7213
7227
.
76.
Talbot
,
D.
, and
Willis
,
J. R.
, 1985, “
Variational Principles for Inhomogeneous Nonlinear Media
,”
IMA J. Appl. Math.
0272-4960,
35
, pp.
39
54
.
77.
Willis
,
J. R.
, 1983, “
The Overall Response of Composite Materials
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
1202
1209
.
78.
Berveiller
,
M.
, and
Zaoui
,
A.
, 1978, “
An Extension of the Self-Consistent Scheme to Plastically Flowing Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
26
, pp.
325
344
.
79.
Tandon
,
G. P.
, and
Weng
,
G. J.
, 1988, “
A Theory of Particle-Reinforced Plasticity
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
126
135
.
80.
Qiu
,
Y. P.
, and
Weng
,
G. J.
, 1992, “
A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
261
268
.
81.
Qiu
,
Y. P.
, and
Weng
,
G. J.
, 1993, “
Plastic Potential and Yield Function of Porous Materials With Aligned and Randomly Oriented Spheroidal Voids
,”
Int. J. Plast.
0749-6419,
9
, pp.
271
290
.
82.
Qiu
,
Y. P.
, and
Weng
,
G. J.
, 1995, “
An Energy Approach to the Plasticity of a Two Phase Composite Containing Aligned Inclusions
,”
ASME J. Appl. Mech.
0021-8936,
62
, pp.
1039
1046
.
83.
Suquet
,
P.
, 1995, “
Overall Properties of Nonlinear Composites: A Modified Secant Moduli Theory and Its Link With Ponte Castaneda’s Nonlinear Variational Procedure
,”
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
1251-8050,
320
, pp.
563
571
.
84.
Hu
,
G. K.
, 1996, “
A Method of Plasticity for General Aligned Spheroidal Void or Fiber-Reinforced Composites
,”
Int. J. Plast.
0749-6419,
12
, pp.
439
449
.
85.
Ponte Castaneda
,
P.
, 1997, “
Nonlinear Composite Materials: Effective Constitutive Behavior and Microstructure Evolution
,”
Continuum Mechanics, CISM Courses and Lectures
,
P.
Suquet
, ed.,
Springer
,
Vienna-New York
, Vol.
377
, pp.
131
195
.
86.
Christensen
,
R. M.
, 1990, “
A Critique Evaluation for a Class of Micro-Mechanics Models
,”
J. Mech. Phys. Solids
0022-5096,
38
, pp.
379
404
.
87.
Torquato
,
S.
, 1991, “
Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties
,”
Appl. Mech. Rev.
0003-6900,
44
, pp.
37
76
.
88.
Ju
,
J. W.
, and
Chen
,
T. M.
, 1994, “
Effective Moduli of Two-Phase Composites Containing Randomly Dispersed Spherical Inhomogeneities
,”
Acta Mech.
0001-5970,
103
, pp.
123
144
.
89.
Buryachenko
,
V. A.
, 2001, “
Multiparticle Effective Field and Related Methods in Micromechanics of Composite Materials
,”
Appl. Mech. Rev.
0003-6900,
54
, pp.
1
47
.
90.
Weng
,
G. J.
, 1990, “
The Theoretical Connection Between Mori-Tanaka’s Theory and the Hashin-Shtrikman-Walpole Bounds
,”
Int. J. Eng. Sci.
0020-7225,
28
, pp.
1111
1120
.
91.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in the Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
0001-6160,
21
, pp.
571
574
.
92.
Kuster
,
G. T.
, and
Toksoz
,
M. N.
, 1974, “
Velocity and Attenuation of Seismic Waves in Two-Phase Media I. Theoretical Formulation
,”
Geophysics
0016-8033,
39
, pp.
587
606
.
93.
Herve
,
E.
,
Stolz
,
C.
, and
Zaoui
,
A.
, 1991, “
A Propos de l’assemblage des Spheres Composite de Hashin
,”
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
1251-8050,
313
, pp.
857
862
.
94.
Ponte Castaneda
,
P.
, and
Willis
,
J. R.
, 1995, “
The Effect of Spatial Distribution on the Effective Behavior of Composite Materials and Cracked Media
,”
J. Mech. Phys. Solids
0022-5096,
43
, pp.
1919
1951
.
95.
Zheng
,
Q. S.
, and
Du
,
D. X.
, 2001, “
An Explicit and Universally Applicable Estimate for the Effective Properties of Multiphase Composites Which Accounts for Inclusion Distribution
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
2765
2788
.
96.
McLaughlin
,
R.
, 1977, “
A Study of the Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
0020-7225,
15
, pp.
237
244
.
97.
Norris
,
A. N.
,
Callegari
,
A. J.
, and
Sheng
,
P. A.
, 1985, “
A Generalized Differential Effective Medium Theory
,”
J. Mech. Phys. Solids
0022-5096,
33
, pp.
525
543
.
98.
Zimmerman
,
R. W.
, 1991, “
Elastic Moduli of a Solid Containing Spherical Inclusions
,”
Mech. Mater.
0167-6636,
12
, pp.
17
24
.
99.
Walsh
,
J. B.
,
Brace
,
W. F.
, and
England
,
A. W.
, 1965, “
The Effect of Porosity on Compressibility of Glass
,”
J. Am. Chem. Soc.
0002-7863,
48
, pp.
605
608
.
100.
Progelhof
,
R. C.
, and
Throne
,
J. L.
, 1979, “
Young’s Modulus of Uniform Density Thermoplastic Foam
,”
Polym. Eng. Sci.
0032-3888,
19
, pp.
493
499
.
101.
Christensen
,
R. M.
, 1993, “
Effective Properties of Composite Materials Containing Voids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
440
, pp.
461
473
.
102.
Cherkaev
,
A.
,
Lurie
,
A.
, and
Milton
,
G. W.
, 1992, “
Invariant Properties of Stress in Plane Elasticity and Equivalence Classes of Composites
,”
Proc. R. Soc. London, Ser. A
1364-5021,
438
, pp.
519
529
.
103.
Thorpe
,
M. F.
, and
Jasiuk
,
I.
, 1992, “
New Results in the Theory of Elasticity for Two-Dimensional Composites
,”
Proc. R. Soc. London, Ser. A
1364-5021,
438
, pp.
531
544
.
104.
Day
,
A. R.
,
Snyder
,
K. A.
,
Garboczi
,
E. J.
, and
Thorpe
,
M. F.
, 1992, “
The Elastic Moduli of Sheet Containing Spherical Holes
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
1031
1051
.
105.
Zimmerman
,
R. W.
, 1994, “
Behavior of the Poisson Ratio of a Two-Phase Composite Material in the High-Concentration Limit
,”
Appl. Mech. Rev.
0003-6900,
47
, pp.
S38
S44
.
106.
Christensen
,
R. M.
, and
Lo
,
K. H.
, 1979, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
0022-5096,
27
, pp.
315
330
.
107.
Torquato
,
S.
, 1998, “
Effective Stiffness Tensor of Composite Media: II. Application to Isotropic Dispersions
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1411
1440
.
108.
Segurado
,
J.
, and
Llorca
,
J.
, 2002, “
A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
2107
2121
.
109.
Dai
,
L. H.
,
Huang
,
Z. P.
, and
Wang
,
R.
, 1998, “
A Generalized Self-Consistent Mori-Tanaka Scheme for Prediction of the Effective Elastic Moduli of Hybrid Multiphase Particulate Composites
,”
Polym. Compos.
0272-8397,
19
, pp.
506
513
.
110.
Dai
,
L. H.
,
Huang
,
Z. P.
, and
Wang
,
R.
, 1999, “
Explicit Expressions for Bounds for the Effective Moduli of Multi-Phased Composites by the Generalized Self-Consistent Method
,”
Compos. Sci. Technol.
0266-3538,
59
, pp.
1691
1699
.
111.
Voigt
,
W.
, 1889, “
Über die Beziehung Zwishen den Beiden Elastizitätskonstanten Isotroper Körper
,”
Wied. Ann.
,
38
, pp.
573
587
.
112.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
, 2nd ed.,
Martinus Nijhoff Publishers
,
Dordrecht
.
113.
Milton
,
G. W.
, 2002,
The Theory of Composites
,
Cambridge University Press
,
New York
.
114.
Torquato
,
S.
, 2002,
Random Heterogeneous Materials
,
Springer-Verlag
,
New York
.
115.
Poutet
,
J.
,
Manzoni
,
D.
,
Hage-Chehade
,
F.
,
Jacquin
,
C. J.
,
Boutéca
,
M. J.
,
Thovert
,
J.-F.
, and
Adler
,
P. M.
, 1996, “
The Effective Mechanical Properties of Random Porous Media
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
1587
1620
.
116.
Ponte Castaneda
,
P.
, and
Zaidman
,
M.
, 1994, “
Constitutive Models for Porous Materials With Evolving Microstructure
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
1459
1497
.
117.
Li
,
H. L.
, and
Huang
,
Z. P.
, 1999, “
A Statistical Model of Microvoids’ Evolution in Rate Sensitive Ductile Materials—Solution for High Stress Triaxiality Cases
,”
Int. J. Damage Mech.
1056-7895,
8
, pp.
41
60
.
118.
Huang
,
Z. P.
, and
Li
,
H. L.
, 2000, “
Statistical and Stochastic Description of Microvoid Evolution Observed in Dynamic Failure of Ductile Materials
,”
Key Eng. Mater.
1013-9826,
177–180
, pp.
1
14
.
You do not currently have access to this content.