This study revisits Timoshenko beam theory (TBT). It discusses at depth a more consistent and simpler governing differential equation. The so-called second spectrum is also addressed. Then, we provide the asymptotic justification of the aforementioned differential equation along with detailed discussion of the boundary and initial conditions. The paper also presents remarks of historical character, in the context of other pertinent studies.

References

1.
Berdichevskii
,
V. L.
, and
Kvashnina
,
S. S.
,
1974
, “
On Equations Describing the Transverse Vibrations of Elastic Bars
,”
J. Appl. Math. Mech.
,
40
(
1
), pp.
104
119
(Prikl. Mat. Mekh., 40(1), pp. 120–135).
2.
Sayir
,
M.
,
1980
, “
Flexural Vibrations of Strongly Anisotropic Beams
,”
Ing. Arch.
,
49
, pp.
309
330
.
3.
Goldenveizer
,
A. L.
,
Kaplunov
,
J. D.
, and
Nolde
,
E. V.
,
1993
, “
On Timoshenko–Reissner Type Theories of Plates and Shells
,”
Int. J. Solids Struct.
,
30
(
5
), pp.
675
694
.
4.
Bhaskar
,
A.
,
2009
, “
Elastic Waves in Timoshenko Beams: The “Lost and Found” of an Eigenmode
,”
Proc. R. Soc. A
,
465
(
2101
), pp.
239
255
.
5.
Timoshenko
,
S. P.
,
1916
,
Course of Elasticity Theory. Part 2—Columns and Plates
,
A. E. Collins Publishers
,
St. Petersburg
, 1916 (in Russian) (2nd ed., Naukova Dumka, Kiev, 1972).
6.
Timoshenko
,
S. P.
,
1920
, “
On the Differential Equation for the Flexural Vibrations of Prismatical Rods
,”
Glas. Hrvat. Prirodosl. Drus., Zagreb
,
32
,
Nr. 2
, pp.
55
57
(in English).
7.
Timoshenko
,
S. P.
,
1921
, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
,
41
(
245
), pp.
744
746
.
8.
Kaplunov
,
J. D.
,
Kossovich
,
L. Y.
, and
Nolde
,
E. V.
,
1998
,
Dynamics of Thin Walled Elastic Bodies
,
Academic Press
,
San Diego, CA
.
9.
Rayleigh Lord (J. W. S. Strutt)
,
1877–1878
,
The Theory of Sound
,
Macmillan
,
London
.
10.
Bresse
,
J. A. C.
,
1859
,
Cours de Mécanique Appliquée
,
Mallet-Bachelier
,
Paris
(in French).
11.
Timoshenko
,
S. P.
,
1921
, “
On the Additional Deflection Due to Shearing
,”
Glas. Hrvat. Prirodosl. Drus., Zagreb
,
33
,
Part 1, Nr. 1
, pp.
50
52
(in English).
12.
Laura
,
P. P. A.
,
Rossi
,
R. E.
, and
Maurizi
,
M.
,
1992
,
Vibrating Timoshenko Beams: A Tribute to the 70th Anniversary of the Publication of Professor S. Timoshenko's Epoch Making Contribution
,
Institute of Applied Mechanics and Department of Engineering, Universidad Nacional del Sur
,
Bahia Blanca, Argentina
.
13.
Pisarenko
,
G. S.
,
1991
,
Stepan Prokopievich Timoshenko, 1878–1972
,
Nauka
,
Moscow
(in Russian).
14.
Grigolyuk
,
E. I.
,
2000
,
S.P. Timoshenko: Life and Destiny
,
Krylov State Research Centre
,
St. Petersburg
(in Russian).
15.
Gere
,
J. M.
,
Herrmann
,
G.
,
Kays
,
W. M.
, and
Lee
,
E. H.
,
1972
, “
Memorial Resolution, Stephen P. Timoshenko (1878–1972)
,” Stanford Historical Society, Stanford, CA, http://historicalsociety.stanford.edu/pdfmem/TimoshenkoS.pdf
16.
Simha
,
K. R. Y.
,
2002
, “
Timoshenko: Father of Engineering Mechanics
,”
Resonance
,
7
(
10
), pp.
2
3
.
17.
Felippa
,
C. A.
,
2005
, “
The Amusing History of Shear Flexible Beam Elements
,”
IACM Expressions
,
17
(
5
), pp.
13
17
.
18.
Koiter
,
W. T.
,
1977
, “
Discussion: ‘Timoshenko Beam Theory is Not Always More Accurate Than Elementary Beam Theory’ (Nicholson, J. W., and Simmonds, J. G., 1977, ASME J. Appl. Mech., 44, pp. 337–338)
,”
ASME J. Appl. Mech.
,
44
(
2
), pp.
357
358
.
19.
Rankine
,
W. J. W.
,
1858
,
A Manual of Applied Mechanics
,
Richard Griffin and Co.
,
London
, pp.
342
344
.
20.
Grigolyuk
,
E. I.
, and
Selezov
,
I. T.
,
1973
, “
Nonclassical Theories of Vibrations of Columns, Plates, and Shells
,”
Advances in Science and Technology, Series. Mechanics of Deformable Solids
, Vol.
5
,
VINITI Publishers
,
Moscow
(in Russian).
21.
Selezov
,
I.
,
2009
, private communication.
22.
Simmonds
,
J. G.
,
2003
, “
In Support of A. L. Gol'denveiser's Approach to Refining Classical Plate and Shell Theories
,” Izvestiya VUZov, Severo-Kavkazskii Region: Estestvennye Nauki, Special Issue: Non-Linear Problems in Continuum Mechanics, pp.
75
76
.
23.
Flügge
,
W.
,
1942
, “
Die Ausbreitung von Biegungswellen in Staben
,”
Z. Angew. Math. Mech.
,
22
(
6
), pp.
312
318
(in German).
24.
Flügge
,
W.
,
1939
, “
Stephen Timoshenko Zum 60
,”
Z. Angew. Math. Mech.
,
19
(
1
), pp.
63
64
(in German).
25.
Flügge
,
W.
, ed.,
1962
,
Handbook of Engineering Mechanics
,
McGraw-Hill
,
New York
.
26.
Young
,
D. H.
,
1962
, “
Continuous Systems
,”
Handbook of Engineering Mechanics
,
W.
Flügge
, ed.,
McGraw-Hill
,
New York
, pp.
61.14
61.18
.
27.
Zajac
,
E. E.
,
1962
, “
Propagation of Elastic Waves
,”
Handbook of Engineering Mechanics
,
W.
Flügge
, ed.,
McGraw-Hill
,
New York
, pp.
64.9
64.11
.
28.
Kurrer
,
K. E.
,
2008
,
The History of Theory of Structures: From Arch Analysis to Computational Mechanics
,
Ernst & Sohn
,
Berlin
.
29.
Timoshenko
,
S. P.
,
1975
,
Strength and Vibrations of Structural Elements
,
E. I.
Grigolyuk
, ed.,
Nauka, Moscow
(in Russian), p.
10
.
30.
Young
,
D. H.
,
1954
, “
Collected Papers of Stephen P. Timoshenko
,”
ASME J. Appl. Mech.
,
21
(
4
), pp.
418
419
.
31.
Young
,
D. H.
,
1972
, “
Stephen P. Timoshenko: 1878–1972
,”
ASME Appl. Mech. Rev.
,
25
(
7
), pp.
759
763
.
32.
Stephen
,
N. G.
,
2006
, “
The Second Frequency Spectrum of Timoshenko Beams—Further Assessment
,”
J. Sound Vib.
,
292
, pp.
372
389
.
33.
Goens
,
E.
,
1931
, “
Uber die Bestimmung des Elastizitatsmoduls von Staben mit Hilfe von Biegungsschwingungen
,”
Ann. Phys.
,
403
(
6
), pp.
649
678
(in German).
34.
Trail-Nash
,
R. W.
, and
Collar
,
A. R.
,
1953
, “
The Effects of Shear Flexibility and Rotatory Inertia on the Bending Vibrations of Beams
,”
Q. J. Mech. Appl. Math.
,
6
(
Pt. 2
), pp.
186
222
.
35.
Abbas
,
B. A. H.
, and
Thomas
,
J.
,
1977
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
51
(
1
), pp.
123
137
.
36.
Bhashyam
,
G. R.
, and
Prathap
,
G.
,
1981
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
76
(
3
), pp.
407
420
.
37.
Hathout
,
I.
,
Leipholz
,
H.
, and
Singhal
,
K.
,
1980
, “
Sensitivity of the Frequencies of Clamped Timoshenko Beams
,”
J. Eng. Sci. Univ. Riyadh
,
6
, pp.
113
121
.
38.
Levinson
,
M.
, and
Cooke
,
D. W.
,
1982
, “
On the Two Frequency Spectra of Timoshenko Beams
,”
J. Sound Vib.
,
84
(
3
), pp.
319
326
.
39.
Stephen
,
N. G.
,
1982
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
80
(
4
), pp.
578
582
.
40.
Stephen
,
N. G.
, and
Puchegger
,
S.
,
2006
, “
On the Valid Frequency Range of Timoshenko Beam Theory
,”
J. Sound Vib.
,
297
(
3–5
), pp.
1082
1087
.
41.
Nesterenko
,
V. V.
,
1993
, “
A Theory for Transverse Vibrations of the Timoshenko Beam
,”
J. Appl. Math. Mech.
,
57
(
4
), pp.
669
677
.
42.
Chervyakov
,
A. M.
, and
Nesterenko
,
V. V.
,
1993
, “
Is it Possible to Assign Physical Meaning to Field Theory With Higher Derivatives?
,”
Phys. Rev. D
,
48
(
12
), pp.
5811
5817
.
43.
Manevich
,
A. I.
,
2015
, “
Dynamics of Timoshenko Beam on Linear and Nonlinear Foundation Phase Relations, Significance of the Second Spectrum, Stability
,”
J. Sound Vib.
,
344
, pp.
209
220
.
44.
Elishakoff
,
I.
,
2010
, “
An Equation Both More Consistent and Simper Than the Bresse–Timoshenko Equation
,”
Advances in Mathematical Modeling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume
,
R.
Gilat
and
L.
Banks-Sills
, eds.,
Springer
,
Berlin
, pp.
249
254
.
45.
Elishakoff
,
I.
, and
Lubliner
,
E.
,
1985
, “
Random Vibration of a Structure Via Classical and Nonclassical Theories
,”
Probabilistic Methods in Mechanics and Structures
,
S.
Eggwertz
and
N.
Lind
, eds.,
Springer
,
Berlin
, pp.
455
467
.
46.
Elishakoff
,
I.
, and
Livshits
,
D.
,
1989
, “
Some Closed-Form Solutions in Random Vibration of Bresse–Timoshenko Beams
,”
Probab. Eng. Mech.
,
4
(
1
), pp.
49
54
.
47.
Lottati
,
I.
, and
Elishakoff
,
I.
,
1987
, “
Influence of the Shear Deformation and Rotary Inertia on the Flutter of a Cantilever Subjected to a Follower Force—Exact and Symbolic Manipulation Solutions
,”
Refined Dynamical Theories in Beams, Plates and Shells and Their Applications
,
I.
Elishakoff
and
H.
Irretier
, eds.,
Springer
,
Berlin
, pp.
261
273
.
48.
Elishakoff
,
I.
, and
Abramovich
,
H.
,
1992
, “
Note on Dynamic Response of Large Space Structures
,”
J. Sound Vib.
,
156
(
1
), pp.
178
184
.
49.
Elishakoff
,
I.
,
Baruch
,
M.
,
Zhu
,
L.
, and
Caimi
,
R.
,
1995
, “
Random Vibration of Space Shuttle Weather Protection Systems
,”
Shock Vib.
,
2
(
2
), pp.
111
118
.
50.
Pielorz
,
A.
,
1996
, “
Discrete-Continuous Models in the Analysis of Low Structures Subject to Kinetic Excitations Caused by Transversal Waves
,”
Mech. Teor. Stosow. (J. Theor. Appl. Mech.)
,
3
(
34
), pp.
547
566
.
51.
Falsone
,
G.
,
Settineri
,
D.
, and
Elishakoff
,
I.
,
2015
, “
A New Class of Interdependent Shape Polynomials for the FE Dynamic Analysis of Mindlin Plate Timoshenko Beam
,”
Meccanica
,
50
(
3
), pp.
767
780
.
52.
Elishakoff
,
I.
, and
Pentaras
,
D.
,
2009
, “
Natural Frequencies of Carbon Nanotubes Based on Simplified Bresse–Timoshenko Theory
,”
J. Comput. Theor. Nanosci.
,
6
(
7
), pp.
1527
1531
.
53.
Elishakoff
,
I.
,
Challamel
,
N.
,
Soret
,
C.
,
Bekel
,
Y.
, and
Gomez
,
T.
,
2013
, “
Virus Sensor Based on Single-Walled Carbon Nanotube: Improved Theory Incorporating Surface Effects
,”
Philos. Trans. R. Soc. A
,
371
(
1993
), p.
20120424
.
54.
Elishakoff
,
I.
, and
Soret
,
C.
,
2013
, “
A Consistent Set of Nonlocal Bresse–Timoshenko Equations for Nanobeams With Surface Effects
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061001
.
55.
Tseitlin
,
A. I.
,
1961a
, “
On the Effect of Shear Deformation and Rotary Inertia in Vibrations of Beams on Elastic Foundation
,”
J. Appl. Math. Mech.
,
25
(
2
), pp.
531
535
(Prikl. Mat. Mekh., 25(2), pp. 362–364, in Russian).
56.
Tseitlin
,
A. I.
,
1961b
, “
About the Solution of Timoshenko's Equation for the Beam on Elastic Foundation
,”
Proceedings of the Kazakh Branch of the Academy of Civil Engineering and Architecture of the USSR
, Vol.
3
, pp.
250
254
(in Russian).
57.
Szidarovsky
,
J.
,
1962
, “
Natural Vibration of a Bar Under Axial Force, Taking Into Consideration the Effect of Shearing Force and Rotatory Inertia
,”
Acta Tech. Acad. Sci. Hung.
,
39
(
1–2
), pp.
29
41
.
58.
Cherkasov
,
A. P.
,
1964
, “
Influence of Shear Force and Rotary Inertia on Dynamic Stability of Columns
,”
Proceedings of the Kharkov Civil Engineering Institute
, Vol.
16
, pp.
21
32
(in Russian).
59.
Vorobyev
,
N. L.
,
1968
, “
Towards Questions of Qualitative Methods of Determination of Critical Forces and Free Vibration Frequencies of Columns
,”
Problems of Reliability and Serviceability of Agrarian Machines
, Rostov-on-Don, pp.
20
29
(in Russian).
60.
Sabodash
,
B. A.
,
1979
, “
Dynamic Stability of Beams With Shear Deformation and Rotary Inertia Taken Into Account
,”
Prikl. Mekh. (Appl. Mech.)
,
15
(
5
), pp.
73
78
(in Russian).
61.
Berdichevsky
,
V. L.
,
1973
, “
Dynamic Theory of Thin Elastic Plates
,”
Izv. AN SSSR, Mekh. Tverd. Tela
,
8
(
6
), pp.
99
109
.
62.
Stephen
,
N. G.
, and
Levinson
,
M.
,
1979
, “
A Second Order Beam Theory
,”
J. Sound Vib.
,
67
(
3
), pp.
293
305
.
63.
Stephen
,
N. G.
,
1997
, “
Mindlin Plate Theory: Best Shear Coefficient and Higher Spectra Validity
,”
J. Sound Vib.
,
202
(
4
), pp.
539
553
.
64.
Belov
,
A. V.
,
Kaplunov
,
J. D.
, and
Nolde
,
E. V.
,
1999
, “
A Refined Asymptotic Model of Fluid-Structure Interaction in Scattering by Elastic Shells
,”
Flow, Turbul. Combust.
,
61
, pp.
255
267
.
65.
Kaplunov
,
J. D.
,
Nolde
,
E. V.
, and
Shorr
,
B. F.
,
2005
, “
A Perturbation Approach for Evaluating Natural Frequencies of Moderately Thick Elliptic Plates
,”
J. Sound Vib.
,
281
, pp.
905
919
.
66.
Pichugin
,
A. V.
,
Askes
,
H.
, and
Tyas
,
A.
,
2008
, “
Asymptotic Equivalence of Homogenisation Procedures and Fine-Tuning of Continuum Theories
,”
J. Sound Vib.
,
313
(
3–5
), pp.
858
874
.
67.
Prathap
,
G.
,
1983
, “
The Two Frequency Spectra of Timoshenko Beams—A Re-Assessment
,”
J. Sound Vib.
,
90
(
3
), pp.
443
446
.
68.
Anderson
,
R. A.
,
1953
, “
Flexural Vibrations in Uniform Beams According to the Timoshenko Theory
,”
ASME J. Appl. Mech.
,
20
, pp.
504
510
.
69.
Dolph
,
C. L.
,
1954
, “
On the Timoshenko Theory of Transverse Beam Vibrations
,”
Q. J. Appl. Math.
,
12
, pp.
175
187
.
70.
Aalami
,
B.
, and
Atzori
,
B.
,
1974
, “
Flexural Vibrations and Timoshenko's Beam Theory
,”
AIAA J.
,
12
(
5
), pp.
679
685
.
71.
Barr
,
A. D. S.
,
1993
, “
Parametric Vibration in Beams
,”
Proceedings of the 14th Canadian Congress of Applied Mechanics
, Vol.
1
,
Queen's University
,
Kingston, ON
, pp.
3
9
.
72.
Chan
,
K. T.
,
Wang
,
X. Q.
,
So
,
R. M. S.
, and
Reid
,
S. R.
,
2001
, “
Superposed Standing Waves in a Timoshenko Beam
,”
Proc. R. Soc. London, A
,
458
, pp.
83
108
.
73.
Dixit
,
A.
,
2013
, “
Mechanics-Based Explanation of the Second Frequency Branch of Timoshenko Beam Theory
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Boston, MA,
AIAA
, Reston, VA, April 8–11, pp.
1
15
.
74.
Dym
,
C. L.
, and
Shames
,
I. H.
,
1972
,
Solid Mechanics: A Variational Approach
,
McGraw-Hill
,
New York
.
75.
Le
,
K. C.
,
1999
,
Vibrations of Shells and Rods
,
Springer
,
Berlin
.
76.
Berdichevsky
,
V. L.
,
2009
,
Variational Principles in Continuum Mechanics
,
Springer
,
Berlin
.
77.
Kaplunov
,
J. D.
,
1995
, “
Long-Wave Vibrations of a Thin-Walled Body With Fixed Faces
,”
Q. J. Mech. Appl. Math.
,
48
(
3
), pp.
311
327
.
78.
Kaplunov
,
J. D.
, and
Nolde
,
E. V.
,
2002
, “
Long-Wave Vibrations of a Nearly Incompressible Isotropic Plate With Fixed Faces
,”
Q. J. Mech. Appl. Math.
,
55
(
3
), pp.
345
356
.
79.
Kaplunov
,
J. D.
, and
Markushevich
,
D. G.
,
1993
, “
Plane Vibrations and Radiation of an Elastic Layer Lying on a Liquid Half-Space
,”
Wave Motion
,
17
(
3
), pp.
199
211
.
80.
Kaplunov
,
J. D.
,
Nolde
,
E. V.
, and
Veksler
,
N. D.
,
1994
, “
Asymptotic Formulae for the Modal Resonance of Peripheral Waves in the Scattering of an Obliquely Incident Plane Acoustic Wave by a Cylindrical Shell
,”
Acustica
,
80
, pp.
280
293
.
81.
Ryazantseva
,
M. Y.
,
1989
, “
High-Frequency Vibrations of Symmetrical Sandwich Plates
,”
Mech. Solids
,
24
(
5
), pp.
175
181
.
82.
Kaplunov
,
J. D.
,
Kossovich
,
L. Y.
, and
Rogerson
,
G. A.
,
2000
, “
Direct Asymptotic Integration of the Equations of Transversely Isotropic Elasticity for a Plate Near Cut-Off Frequencies
,”
Q. J. Mech. Appl. Math.
,
53
(
2
), pp.
323
341
.
83.
Pichugin
,
A. V.
, and
Gogerson
,
G. A.
,
2001
, “
A Two-Dimensional Model for Extensional Motion of a Pre-Stressed Incompressible Elastic Layer Near Cut-Off Frequencies
,”
IMA J. Appl. Math.
,
66
(
4
), pp.
357
385
.
84.
Kaplunov
,
J. D.
,
Nolde
,
E. V.
, and
Rogerson
,
G. A.
,
2002
, “
An Asymptotically Consistent Model for Long-Wave High-Frequency Motion in a Prestressed Elastic Plate
,”
Math. Mech. Solids
,
7
(
6
), pp.
581
606
.
85.
Lutianov
,
M.
, and
Rogerson
,
G. A.
,
2010
, “
Long Wave Motion in Layered Elastic Media
,”
Int. J. Eng. Sci.
,
48
(
12
), pp.
1856
1871
.
86.
Van Dyke
,
M. D.
,
1975
,
Perturbation Methods in Fluid Mechanics
,
Parabolic Press
,
Stanford, CA
.
87.
Andrianov
,
I.
,
Awrejcewicz
,
J.
, and
Manevitch
,
L. I.
,
2004
,
Asymptotical Mechanics of Thin-Walled Structures
,
Springer
,
Berlin
.
88.
Love
,
A. E. H.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
Dover Publications
,
New York
.
89.
Bishop, R. E. D.,
1952
, “
Longitudinal Waves in Beams
,”
Aeronaut.l Quar.
,
3
(
2
), pp.
280
293
.
90.
Shatalov
,
M.
,
Marais
,
J.
,
Fedotov
,
J.
, and
Tenkam
,
M. J.
,
2011
, “
Longitudinal Vibrationn of Isotropic Solid Rods: From Classical to Modern Theories
,”
Advances in Computer Science and Engineering
,
M.
Schmidt
, ed., InTech Open, Rijeka, Croatia, pp.
187
214
.
91.
Stephen
,
N. G.
,
1981
, “
Considerations on Second Order Beam Theories
,”
Int. J. Solids Struct.
,
17
(
3
), pp.
325
333
.
92.
Young
,
D. H.
,
1953
,
Biographical Sketch, The Collected Papers
,
S. P.
Timoshenko
, ed.,
McGraw-Hill
,
New York
, p.
XVIII
.
93.
Timoshenko
,
S. P.
,
1968
,
As I Remember: The Autobiography of Stephen P. Timoshenko
,
D. Van Nostrand
,
Princeton, NJ
, pp.
128
129
.
94.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
,
AIAA
,
Reston, VA
.
95.
Berdichevsky
,
V. L.
,
1976
, “
Equations of the Theory of Anisotropic Inhomogeneous Rods
,”
Dokl. Akad. Nauk SSSR
,
228
, pp.
558
561
.
96.
Berdichevsky
,
V. L.
, and
Starosel'skii
,
L. A.
,
1983
, “
On the Theory of Curvilinear Timoshenko-Type Rods
,”
J. Appl. Math. Mech. (Prikl. Mat. Mekh.)
,
47
(
6
), pp.
809
817
.
97.
Popescu
,
B.
, and
Hodges
,
D. H.
,
2000
, “
On Asymptotically Correct Timoshenko-Like Anisotropic Beam Theory
,”
Int. J. Solids Struct.
,
37
(
3
), pp.
535
558
.
98.
Kathnelson
,
A. N.
,
1994
, “
Improved Beam Vibration Equations: Asymptotic Approach
,”
J. Sound Vib.
,
178
(
2
), pp.
265
268
.
99.
Goldenveizer
,
A. L.
,
1958
, “
On Reissner's Theory of Bending of Plates
,”
Izv. AN SSSR, Otd. Tekhn. Nauk.
,
4
, pp.
102
109
.
100.
Duva
,
J. M.
, and
Simmonds
,
J. G.
,
1991
, “
The Usefulness of Elementary Theory for the Linear Vibrations of Layered, Orthotropic Elastic Beams and Corrections Due to Two-Dimensional End Effects
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
175
180
.
101.
Duva
,
J. M.
, and
Simmonds
,
J. G.
,
1992
, “
The Influence of Two-Dimensional End Effects on the Natural Frequencies of Cantilevered Beams in Shear
,”
ASME J. Appl. Mech.
,
59
(
1
), pp.
230
232
.
102.
Simmonds
,
J. G.
,
2008
, “
Discussion: ‘New First-Order Shear Deformation Plate Theories' (Shimpi, R. P., Patel, H. G., and Arya, H., 2007, ASME J. Appl. Mech., 74, pp. 523–533)
,”
ASME J. Appl. Mech.
,
75
(
4
), p.
045503
.
103.
Shimpi
,
R. P.
,
Patel
,
H. G.
, and
Arya
,
H.
,
2007
, “
New First-Order Shear Deformation Plate Theories
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
523
533
.
104.
Simmonds
,
J. G.
,
2008
, private communication.
105.
Simmonds
,
J. G.
,
2009
, private communications.
106.
Reissner
,
E.
,
1944
, “
On the Theory of Bending of Elastic Plates
,”
J. Math. Phys. (Cambridge, MA)
,
23
, pp.
184
191
.
107.
Reissner
,
E.
,
1945
, “
The Effect of Transverse-Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
A67
A77
.
108.
Gregory
,
R. D.
, and
Wan
,
F. Y. M.
,
1984
, “
Decaying States of Plane Strain in a Semi-Infinite Strip and Boundary Conditions for Plate Theory
,”
J. Elasticity
,
14
(
1
), pp.
27
64
.
109.
Babenkova
,
E.
, and
Kaplunov
,
J.
,
2004
, “
Low-Frequency Decay Conditions for a Semi-Infinite Elastic Strip
,”
Proc. R. Soc. Lond. A
,
460
(
2048
), pp.
2153
2169
.
110.
Bolotin
,
V. V.
,
1961
, “
An Asymptotic Method for the Study of the Problem of Eigenvalues for Rectangular Regions
,”
Problems in Continuum Mechanics: Muskhelishvili Anniversary Volume
,
SIAM
,
Philadelphia, PA
, pp.
56
68
.
111.
King
,
W. W.
,
1974
, “
Applications of Bolotin's Method to Vibrations of Plates
,”
AIAA J.
,
12
(
3
), pp.
399
401
.
112.
Elishakoff
,
I.
,
1976
, “
Bolotin's Dynamic Edge Effect Method
,”
Shock Vib. Dig.
,
8
(
1
), pp.
95
104
.
113.
Kaplunov
,
J. D.
,
Nolde
,
E. V.
, and
Rogerson
,
G. A.
,
2006
, “
An Asymptotic Analysis of Initial-Value Problems for Thin Elastic Plates
,”
Proc. R. Soc. London A
,
462
(
2073
), pp.
2541
2561
.
114.
Nolde
,
E.
,
2007
, “
Qualitative Analysis of Initial-Value Problems for a Thin Elastic Strip
,”
IMA J. Appl. Math.
,
72
(
3
), pp.
348
375
.
115.
Grigolyuk
,
E. I.
,
1971
, “
S. P. Timoshenko and His Works in the Field of Stability of Deformable Systems
,”
Stability of Beams, Plates and Shells
,
E. I.
Grigolyuk
, ed., Nauka,
Moscow
, pp.
731
800
(in Russian).
116.
Grigolyuk
,
E. I.
,
1972
, “
Problems of Strength, Vibrations and Stability of Engineering Constructions and Their Modeling in Works by S.P. Timoshenko
,” Theory of Plates and Shells, Kazan’ University Publishing, Kazan, Russia, Vol.
9
, pp.
3
54
(in Russian).
117.
Grigolyuk
,
E.
I
.
,
1975
, “
S.P. Timoshenko and His Works in Problems of Mechanics of Deformable Solids and Analysis of Engineering Constructions
,”
S.P. Timoshenko: Static and Dynamic Problems in Theory of Elasticity
,
Naukova Dumka Publishers
,
Kiev
, pp.
515
542
(in Russian).
118.
Simha
,
K. R. Y.
,
2002
, “
Timoshenko and His Books
,”
Resonance
,
7
(
10
), pp.
45
53
.
119.
Timoshenko
,
S. P.
,
1953
,
History of Strength of Materials: With a Brief Account of the History of Elasticity and Theory of Structures
,
McGraw-Hill
,
New York
, pp.
146
152
.
120.
Timoshenko
,
S. P.
,
1972
,
Course of Elasticity Theory
, 2nd ed.,
Naukova Dumka Publishers
,
Kiev
(in Russian).
121.
Filin
,
A. P.
,
2007
,
Essays About Scientists-Mechanicists
,
Strategiya Publishers
,
Moscow
(in Russian), p.
784
.
You do not currently have access to this content.