Abstract

Dynamics modeling is indispensable for the design and control of dexterous parallel kinematic manipulators/machines (PKM). Various modeling approaches proposed in the literature build upon the classical formulations for serial manipulators, and thus, inherit those modeling conventions that tend to be restrictive rather than user-friendly. Moreover, the special kinematic topology of PKM is treated either ad hoc or by resolving loop constraints using standard methods from multibody dynamics. Geometric formulations on the other hand, more precisely Lie group formulations, were developed over the last decades that provide a flexible and user-friendly approach to the modeling of robotic systems in general. A dedicated formulation for topologically simple PKM has not yet been proposed, however. Such a formulation is presented in this paper. The frame invariance of the geometric formulation gives rise to a modular modeling approach that further reduces the modeling effort. The equations of motion (EOM) in terms of task space coordinates as well as in actuator coordinates are presented for kinematically nonredundant and redundant topologically simple PKMs. A PKM is topologically simple if its moving platform is connected to the base by simple serial kinematic chains and if there are no other kinematic chains than these. The majority of PKMs are topologically simple, including fully parallel PKM. Applications of the EOM for dynamics simulation and model-based control are briefly discussed. The paper also provides a literature review of approaches to dynamics modeling of PKM.

References

References
1.
Merlet
,
J.
,
2006
,
Parallel Robots
,
Springer
,
Dordrecht, The Netherlands
.
2.
Gosselin
,
C.
, and
Schreiber
,
L.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.10.1115/1.4038931
3.
Bennehar
,
M.
,
Chemori
,
A.
,
Bouri
,
M.
,
Jenni
,
L.
, and
Pierrot
,
F.
,
2018
, “
A New Rise-Based Adaptive Control of PKMS: Design, Stability Analysis and Experiments
,”
Int. J. Control
,
91
(
3
), pp.
593
607
.10.1080/00207179.2017.1286536
4.
Lilly
,
K.
, and
Orin
,
D.
,
1991
, “
Alternate Formulations for the Manipulator Inertia Matrix
,”
Int. J. Rob. Res.
,
10
(
1
), pp.
64
74
.10.1177/027836499101000107
5.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
,
1991
, “
A Spatial Operator Algebra for Manipulator Modeling and Control
,”
Int. J. Rob. Res.
,
10
(
4
), pp.
371
381
.10.1177/027836499101000406
6.
Uicker
,
J. J.
,
Ravani
,
B.
, and
Sheth
,
P. N.
,
2013
,
Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems
,
Cambridge University Press
,
New York
.
7.
Jain
,
A.
,
2011
, “
Graph Theoretic Foundations of Multibody Dynamics—Part II: Analysis and Algorithms
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
335
365
.10.1007/s11044-011-9267-6
8.
Brockett
,
R. W.
,
1984
, “
Robotic Manipulators and the Product of Exponentials Formula
,”
Mathematical Theory of Networks and Systems
(
Lecture Notes in Control and Information Sciences
, Vol.
58
),
Springer, Berlin
, pp.
120
129
.
9.
Park
,
F.
,
Kim
,
B.
,
Jang
,
C.
, and
Hong
,
J.
,
2018
, “
Geometric Algorithms for Robot Dynamics: A Tutorial Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
18
.10.1115/1.4039078
10.
Herve
,
J.
,
1982
, “
Intrinsic Formulation of Problems of Geometry and Kinematics of Mechanisms
,”
Mech. Mach. Theory
,
17
(
3
), pp.
179
184
.10.1016/0094-114X(82)90002-7
11.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics
,
Cambridge, UK
.
12.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
13.
Selig
,
J.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
14.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
,
2002
, “
Singularity-Free Fully-Isotropic Translational Parallel Mechanisms
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
161
174
.10.1177/027836402760475360
15.
Xianwen Kong
., and
Gosselin
,
C. M.
,
2002
, “
Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator
,”
Int. J. Rob. Res.
,
21
(
9
), pp.
791
798
.10.1177/02783649020210090501
16.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2002
,
Type Synthesis of Linear Translational Parallel Manipulators
,
Springer
,
Dordrecht, The Netherlands
, pp.
453
462
.
17.
Kim
,
H. S.
, and
Tsai
,
L.-W.
,
2002
,
Evaluation of a Cartesian Parallel Manipulator
,
Springer
,
Dordrecht, The Netherlands
, pp.
21
28
.
18.
Kim
,
H.
, and
Tsai
,
L.
,
2003
, “
Design Optimization of a Cartesian Parallel Manipulator
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
43
51
.10.1115/1.1543977
19.
Stewart
,
D.
,
1965
, “
A Platform With 6 Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.10.1243/PIME_PROC_1965_180_029_02
20.
Lee
,
K.
, and
Shah
,
D.
,
1988
, “
Dynamic Analysis of a Three-Degrees-of-Freedom in-Parallel Actuated Manipulator
,”
IEEE J. Rob. Autom.
,
4
(
3
), pp.
361
367
.10.1109/56.797
21.
Nakamura
,
Y.
, and
Ghodoussi
,
M.
,
1989
, “
Dynamics Computation of Closed-Link Robot Mechanisms With Nonredundant and Redundant Actuators
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
294
302
.10.1109/70.34765
22.
Mata
,
V.
,
Provenzano
,
S.
,
Cuadrado
,
J.
, and
Valero
,
F.
,
2002
, “
Inverse Dynamic Problem in Robots Using Gibbs-Appell Equations
,”
Robotica
,
20
(
1
), pp.
59
67
.10.1017/S0263574701003502
23.
Mata
,
V.
,
Farhat
,
N.
,
Diaz-Rodriguez
,
M.
,
Valera
,
A.
, and
Page
,
A.
,
2008
, “
Dynamic Parameter Identification for Parallel Manipulators
,”
Parallel Manipulators, Towards New Applications
,
H.
Wu
, ed.,
IntechOpen
,
Vienna, Austria
.
24.
Abedloo
,
E.
,
Molaei
,
A.
, and
Taghirad
,
H. D.
,
2014
, “
Closed-Form Dynamic Formulation of Spherical Parallel Manipulators by Gibbs-Appell Method
,”
RSI/ISM International Conference on Robotics and Mechatronics
, Tehran, Iran, Oct. 15–17, pp.
576
581
.10.1109/ICRoM.2014.6990964
25.
Müller
,
A.
,
2005
, “
Internal Preload Control of Redundantly Actuated Parallel Manipulators—Its Application to Backlash Avoiding Control
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
668
677
.10.1109/TRO.2004.842341
26.
Nikravesh
,
P.
,
1990
, “
Systematic Reduction of Multibody Equations of Motion to a Minimal Set
,”
Int. J. Non-Linear Mech.
,
25
(
2–3
), pp.
143
151
.10.1016/0020-7462(90)90046-C
27.
Wehage
,
R.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
247
255
.10.1115/1.3256318
28.
Wehagea
,
K. T.
,
Wehageb
,
R. A.
, and
Ravani
,
B.
,
2015
, “
Generalized Coordinate Partitioning for Complex Mechanisms Based on Kinematic Substructuring
,”
Mech. Mach. Theory
, 92, pp.
464
483
.10.1016/j.mechmachtheory.2015.06.006
29.
Maisser
,
P.
,
1997
, “
Differential-Geometric Methods in Multibody Dynamics
,”
Nonlinear Anal.
,
30
(
8
), pp.
5127
5133
.10.1016/S0362-546X(96)00147-2
30.
Voronets
,
P.
,
1901
, “
Equations of Motion for Nonholonomic Systems
,”
Matem. Sbornik
,
22
(
4
).
31.
Woronetz
,
P.
,
1910
, “
Über Die Bewegung Eines Starren Körpers, Der Ohne Gleitung auf einer beliebigen Fläche rollt
,”
Mathemat. Annalen,
70
(
3
), pp.
410
453
.
32.
Guglielmetti
,
P.
, and
Longchamp
,
R.
,
1994
, “
A Closed Form Inverse Dynamics Model of the Delta Parallel Robot
,”
IFAC Proc. Vol.
,
27
(
14
), pp.
51
56
.10.1016/S1474-6670(17)47294-6
33.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
1998
, “
A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator
,”
Mech. Mach Theory
,
33
(
8
), pp.
1135
1152
.10.1016/S0094-114X(97)00118-3
34.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1998
, “
A New Approach for the Dynamic Analysis of Parallel Manipulators
,”
Multibody Syst. Dyn.
,
2
(
3
), pp.
317
334
.10.1023/A:1009740326195
35.
Ding
,
B.
,
Cazzolato
,
B. S.
,
Grainger
,
S.
,
Stanley
,
R. M.
, and
Costi
,
J. J.
,
2015
, “
Active Preload Control of a Redundantly Actuated Stewart Platform for Backlash Prevention
,”
Rob. Comput. Integr. Manuf.
,
32
, pp.
11
24
.10.1016/j.rcim.2014.09.005
36.
Haug
,
E.
,
1989
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
,
Allyn and Bacon
,
Needham Heights, MA
.
37.
Nikravesh
,
P.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
38.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
New York
.
39.
Bayo
,
E.
,
Jalon
,
J. G. D.
, and
Serna
,
M. A.
,
1988
, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
183
195
.10.1016/0045-7825(88)90085-0
40.
Bayo
,
E.
, and
Ledesma
,
R.
,
1996
, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
113
130
.10.1007/BF01833296
41.
Chung
,
J.
, and
Hulbert
,
G.
,
1993
, “
The Generalized-αMethod
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
42.
Orlandea
,
N.
,
Calahan
,
D.
, and
Chace
,
M.
,
1977
, “
A Sparsity Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 1
,”
ASME J. Eng. Ind.
,
99
(
3
), pp.
773
779
.10.1115/1.3439312
43.
Orlandea
,
N.
,
Calahan
,
D.
, and
Chace
,
M.
,
1977
, “
A Sparsity Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 2
,”
ASME J. Eng. Ind.
,
99
(
3
), pp.
780
784
.10.1115/1.3439313
44.
Malczyk
,
P.
,
Frączek
,
J.
,
González
,
F.
, and
Cuadrado
,
J.
,
2019
, “
Index-3 Divide-and-Conquer Algorithm for Efficient Multibody System Dynamics Simulations: Theory and Parallel Implementation
,”
Nonlinear Dyn.
,
95
(
1
), pp.
727
747
.10.1007/s11071-018-4593-3
45.
Brüls
,
A.
,
Cardona
,
M.
, and
Arnold
,
2012
, “
Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
34
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
46.
Müller
,
A.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.10.1007/s11044-014-9439-2
47.
Jalon
,
J. D.
,
Unda
,
J.
, and
Avello
,
A.
,
1986
, “
Natural Coordinates for the Computer Analysis of Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
,
56
(
3
), pp.
309
327
.10.1016/0045-7825(86)90044-7
48.
de Jalon
,
J. G.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge
,
Springer
,
Berlin, Heidelberg, Germany
.
49.
Zhao
,
J.
,
Chu
,
F.
, and
Feng
,
Z.
,
2014
, “
Kinematics of Spatial Parallel Manipulators With Tetrahedron Coordinates
,”
IEEE Trans. Rob.
,
30
(
1
), pp.
233
243
.10.1109/TRO.2013.2282692
50.
Zhao
,
J.
,
Feng
,
Z.
,
Chu
,
F.
, and
Ma
,
N.
,
2014
,
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms
,
Elsevier
,
Oxford, UK
.
51.
Sharma
,
A. K.
, and
Saha
,
S. K.
,
2016
, “
Dynamics of a Space Manipulator: Relative vs. Natural Coordinates
,”
Proceedings of Asian Conference on Multibody Dynamics
, Kanazawa, Japan, Aug.
7
10
.10.1299/jsmeacmd.2016.8.25_1293734
52.
Schielen
,
W.
,
1984
, “
Dynamics of Complex Multibody Systems
,”
Solids Mech. Arch.
,
9
(
2
), pp.
159
195
.
53.
Kane
,
T.
, and
Levinson
,
D.
,
1985
,
Dynamics: Theory and Applications
,
Mcgraw-Hill
,
New York
.
54.
Bremer, H.
,
2008
,
Elastic Multibody Dynamics
,
Springer
,
New York
.
55.
Wittenburg
,
J.
,
1989
, “
Dynamics of Multibody Systems–a Brief Review
,”
Acta Astronaut.
,
20
, pp.
89
92
.10.1016/0094-5765(89)90057-X
56.
Wittenburg
,
J.
,
2008
,
Dynamics of Multibody Systems
, 2nd ed.,
Springer
,
Berlin
.
57.
Chace
,
M.
,
1967
, “
Analysis of the Time-Dependence of Multi-Freedom Mechanical Systems in Relative Coordinates
,”
ASME J. Eng. Ind.
,
89
(
1
), pp.
119
125
.10.1115/1.3609982
58.
Orin
,
D.
,
McGhee
,
R.
,
Vukobratovi
,
M.
, and
Hartoch
,
G.
,
1979
, “
Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods
,”
Math. Biosci.
,
43
(
1–2
), pp.
107
130
.10.1016/0025-5564(79)90104-4
59.
Rodriguez
,
G.
,
1987
, “
Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
624
639
.10.1109/JRA.1987.1087147
60.
Hollerbach
,
J.
,
1980
, “
A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity
,”
IEEE Trans. Syst. Man Cybern.
,
10
(
11
), pp.
730
736
.10.1109/TSMC.1980.4308393
61.
Blajer
,
W.
,
Seifried
,
R.
, and
Kołodziejczyk
,
K.
,
2015
, “
Servo-Constraint Realization for Underactuated Mechanical Systems
,”
Arch. Appl. Mech.
,
85
(
9–10
), pp.
1191
1207
.10.1007/s00419-014-0959-2
62.
Luh
,
J.
, and
Zheng
,
Y.-F.
,
1985
, “
Computation of Input Generalized Forces for Robots with Closed Kinematic Chain Mechanisms
,”
IEEE J. Rob. Autom.
,
1
(
2
), pp.
95
103
.10.1109/JRA.1985.1087008
63.
Angeles
,
J.
, and
Lee
,
S.
,
1988
, “
The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME J. Appl. Mech.
,
9
(
5
), pp.
243
244
.
64.
Angeles
,
J.
,
2007
,
Fundamentals of Robotic Mechanical Systems
, 3rd ed.,
Springer
,
Cham, Switzerland
.
65.
Huston
,
R.
, and
Passerello
,
C.
,
1974
, “
On Constraint Equations—A New Approach
,”
ASME J. Appl. Mech.
,
41
(4), pp.
1130
1131
.10.1115/1.3423452
66.
Zanganeh
,
K. E.
,
Sinatra
,
R.
, and
Angeles
,
J.
,
1997
, “
Kinematics and Dynamics of a Six-Degree-of-Freedom Parallel Manipulator with Revolute Legs
,”
Robotica
,
15
(
4
), pp.
385
394
.10.1017/S0263574797000477
67.
Saha
,
S. K.
, and
Schiehlen
,
W. O.
,
2001
, “
Recursive Kinematics and Dynamics for Parallel Structured Closed-Loop Multibody Systems
,”
Mech. Struct. Mach.
,
29
(
2
), pp.
143
175
.10.1081/SME-100104478
68.
Maisser
,
P.
,
1988
, “
Analytische Dynamik Von Mehrkörpersystemen
,”
Z. Angew. Math. Mech.
,
68
(
10
), pp.
463
481
.10.1002/zamm.19880681002
69.
Benedict
,
C.
, and
Tesar
,
D.
,
1978
, “
Model Formulation of Complex Mechanisms with Multiple Inputs: Part 1—Geometry
,”
ASME J. Mech. Des.
,
100
(4), pp.
747
754
.10.1115/1.3454003
70.
Thomas
,
M.
, and
Tesar
,
D.
,
1982
, “
Dynamic Modeling of Serial Manipulator Arms
,”
ASME J. Dyn. Syst. Meas. Control
,
104
(
3
), pp.
218
228
.10.1115/1.3139701
71.
Sugimoto
,
K.
,
1987
, “
Kinematic and Dynamic Analysis of parallel Manipulators by Means of Motor Algebra
,”
ASME J. Mech. Trans. Autom.
,
109
(
1
), pp.
3
7
.10.1115/1.3258783
72.
Tsai
,
L.
,
2000
, “
Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
3
9
.10.1115/1.533540
73.
Gallardo
,
J.
,
Rico
,
J.
,
Frisoli
,
A.
,
Checcacci
,
D.
, and
Bergamasco
,
M.
,
2003
, “
Dynamics of Parallel Manipulators by Means of Screw Theory
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1113
1131
.10.1016/S0094-114X(03)00054-5
74.
Lerbet
,
J.
,
2017
,
Multi-Body Kinematics and Dynamics with Lie Groups
,
ISTE Press—Elsevier
,
Amsterdam, Then Netherlands
.
75.
Yanzhu
,
L.
,
1988
, “
Screw-Matrix Method in Dynamics of Multibody Systems
,”
Acta Mech. Sin.
,
4
(
2
), pp.
165
174
.10.1007/BF02487718
76.
Mladenova
,
C. D.
,
2006
, “
Group Theory in the Problems of Modeling and Control of Multi-Body Systems
,”
J. Geom. Symmetry Phys.
,
8
, pp.
17
121
.10.7546/jgsp-8-2006-17-121
77.
Park
,
F. C.
,
1994
, “
Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics
,”
IEEE Trans. Autom. Control
,
39
(
3
), pp.
643
647
.10.1109/9.280779
78.
Park
,
F.
,
Bobrow
,
J.
, and
Ploen
,
S.
,
1995
, “
A Lie Group Formulation of Robot Dynamics
,”
Int. J. Rob. Res.
,
14
(
6
), pp.
609
618
.10.1177/027836499501400606
79.
Ploen
,
S. R.
, and
Park
,
F. C.
,
1999
, “
Coordinate-Invariant Algorithms for Robot Dynamics
,”
IEEE Trans. Rob. Autom.
,
15
(
6
), pp.
1130
1135
.10.1109/70.817677
80.
Müller
,
A.
,
2018
, “
Screw and Lie Group Theory in Multibody Dynamics -Motion Representation and Recursive Kinematics of Tree-Topology Systems
,”
Multibody Syst. Dyn.
,
43
(
1
), pp.
37
34
.10.1007/s11044-017-9582-7
81.
Müller
,
A.
,
2018
, “
Screw and Lie Group Theory in Multibody Dynamics–Recursive Algorithms and Equations of Motion of Tree-Topology Systems
,”
Multibody Syst. Dyn.
,
42
(
2
), pp.
219
248
.10.1007/s11044-017-9583-6
82.
Ploen
,
S. R.
, and
Park
,
F. C.
,
1997
, “
A Lie Group Formulation of the Dynamics of Cooperating Robot Systems
,”
Rob. Auton. Syst.
,
21
(
3
), pp.
279
287
.10.1016/S0921-8890(96)00802-0
83.
Park
,
F.
,
Choi
,
J.
, and
Ploen
,
S.
,
1999
, “
Symbolic Formulation of Closed Chain Dynamics in Independent Coordinates
,”
Mech. Mach. Theory
,
34
(
5
), pp.
731
751
.10.1016/S0094-114X(98)00052-4
84.
Park
,
F.
, and
Kim
,
M.
,
2000
, “
Lie Theory, Riemannian Geometry, and the Dynamics of Coupled Rigid Bodies
,”
Z. Angew. Math. Physik
,
51
(
5
), pp.
820
834
.10.1007/PL00001521
85.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
86.
Damic
,
V.
, and
Cohodar
,
M.
,
2015
, “
Dynamic Analysis of Stewart Platform by Bond Graphs
,”
Procedia Eng.
,
100
, pp.
226
233
.10.1016/j.proeng.2015.01.362
87.
Jain
,
A.
,
2011
, “
Graph Theoretic Foundations of Multibody Dynamics—Part I: Structural Properties
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
307
333
.10.1007/s11044-011-9266-7
88.
Talaba
,
D.
,
2015
, “
Mechanical Models and the Mobility of Robots and Mechanisms
,”
Robotica
,
33
(
1
), pp.
181
193
.10.1017/S0263574714000149
89.
Müller
,
A.
,
2018
, “
Kinematic Topology and Constraints of Multi-Loop Linkages
,”
Robotica
,
36
(
11
), pp.
1641
1663
.10.1017/S0263574718000619
90.
Tsai
,
L.
, and
Tahmasebi
,
F.
,
1993
, “
Synthesis and Analysis of a New Class of Six-Degree-of-Freedom Parallel Minimanipulators
,”
J. Rob. Syst.
,
10
(
5
), pp.
561
580
.10.1002/rob.4620100503
91.
Tsai
,
L.
,
1998
, “
The Jacobian Analysis of a Parallel Manipulator Using Reciprocal Screws
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarčič
and
M.
Husty
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
327
336
.
92.
Jain
,
A.
,
1991
, “
Unified Formulation of Dynamics for Serial Rigid Multibody Systems
,”
J. Guid. Control Dyn.
,
14
(
3
), pp.
531
542
.10.2514/3.20672
93.
Saha
,
S.
,
1995
, “
The UDUT Decomposition of Manipulator Inertia Matrix
,”
IEEE Conf. Robot. Autom. Nagoya, Japan
,
3
, pp.
2829
2834
.
94.
Briot
,
S.
, and
Khalil
,
W.
,
2015
,
Dynamics of Parallel Robots
,
Springer
,
Cham, Switzerland
.
95.
Ebrahimi
,
I.
,
Carretero
,
J.
, and
Boudreau
,
R.
,
2007
, “
3-prrr Redundant Planar Parallel Manipulator: Inverse Displacement, Workspace and Singularity Analyses
,”
Mech. Mach. Theory
,
42
(
8
), pp.
1007
1016
.10.1016/j.mechmachtheory.2006.07.006
96.
Cha
,
S.
,
Lasky
,
T. A.
, and
Velinsky
,
S. A.
,
2007
, “
Singularity Avoidance for the 3-RRR Mechanism Using Kinematic Redundancy
,”
Proceedings IEEE International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
1195
1200
.10.1109/ROBOT.2007.363147
97.
Cha
,
S.-H.
,
Lasky
,
T.
, and
Velinsky
,
S.
,
2009
, “
Determination of the Kinematically Redundant Active Prismatic Joint Variable Ranges of a Planar Parallel Mechanism for Singularity-Free Trajectories
,”
Mech. Mach. Theory
,
44
(
5
), pp.
1032
1044
.10.1016/j.mechmachtheory.2008.05.010
98.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2008
, “
Kinematic Analysis and Path Planning of a New Kinematically Redundant Planar Parallel Manipulator
,”
Robotica
,
26
(
3
), pp.
405
413
.10.1017/S0263574708004256
99.
Fontes
,
J. V. C.
,
da Silva
,
N. B. F.
, and
da Silva
,
M. M.
,
2019
, “
Feedforward Control for the Kinematically Redundant Manipulator 3PRRR
,”
Advances in Mechanism and Machine Science
,
T.
Uhl
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
2119
2128
.
100.
Kotlarski
,
J.
,
Abdellatif
,
H.
, and
Heimann
,
B.
,
2008
, “
Improving the Pose Accuracy of a Planar 3RRR Parallel Manipulator Using Kinematic Redundancy and Optimized Switching Patterns
,”
IEEE
International Conference on Robotics and Automation, Pasadena, CA, May 19–23, pp.
3863
3868
.10.1109/ROBOT.2008.4543804
101.
Kotlarski
,
J.
,
Thanh
,
T. D.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2010
, “
Optimization Strategies for Additional Actuators of Kinematically Redundant Parallel Kinematic Machines
,”
IEEE
International Conference on Robotics and Automation, Anchorage, Alaska, May 3–8, pp.
656
661
.10.1109/ROBOT.2010.5509982
102.
Fontes
,
J. V. C.
,
Santos
,
J. C.
, and
Silva
,
M. M. D.
,
2014
, “
Optimization Strategies for Actuators of Kinematically Redundant Manipulators to Achieve High Dynamic Performance
,”
Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol
, San Carlos, Brazil, Oct. 18–23, pp.
31
36
.10.1109/SBR.LARS.Robocontrol.2014.32
103.
Ruiz
,
A. G.
,
Santos
,
J. C.
,
Croes
,
J.
,
Desmet
,
W.
, and
da Silva
,
M. M.
,
2018
, “
On Redundancy Resolution and Energy Consumption of Kinematically Redundant Planar Parallel Manipulators
,”
Robotica
,
36
(
6
), pp.
809
821
.10.1017/S026357471800005X
104.
Alba
,
O. G.
,
Pamanes
,
J. A.
, and
Wenger
,
P.
, “
Trajectory Planning of a Redundant Parallel Manipulator Changing of Working Mode
,”
12th IFToMM World Congress
, Besanon, France, June 18–21, p.
6
.
105.
Reveles
,
D.
,
Pamanes
,
J. A.
, and
Wenger
,
P.
,
2016
, “
Trajectory Planning of Kinematically Redundant Parallel Manipulators by Using Multiple Working Modes
,”
Mech. Mach. Theory
,
98
, pp.
216
230
.10.1016/j.mechmachtheory.2015.09.011
106.
Orekhov
,
A. L.
, and
Simaan
,
N.
,
2019
, “
Directional Stiffness Modulation of Parallel Robots With Kinematic Redundancy and Variable Stiffness Joints
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051003
.10.1115/1.4043685
107.
Mohamed
,
M. G.
, and
Gosselin
,
C. M.
,
2005
, “
Design and Analysis of Kinematically Redundant Parallel Manipulators with Configurable Platforms
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
277
287
.10.1109/TRO.2004.837234
108.
Abadi
,
B. N. R.
,
Farid
,
M.
, and
Mahzoon
,
M.
,
2019
, “
Redundancy Resolution and Control of a Novel Spatial Parallel Mechanism with Kinematic Redundancy
,”
Mech. Mach. Theory
,
133
, pp.
112
126
.10.1016/j.mechmachtheory.2018.11.014
109.
Behi
,
F.
,
1988
, “
Kinematic Analysis for a Six-Degree-of-Freedom 3-Prps Parallel Mechanism
,”
IEEE J. Rob. Autom.
,
4
(
5
), pp.
561
565
.10.1109/56.20442
110.
Alizade
,
R. I.
,
Tagiyev
,
N. R.
, and
Duffy
,
J.
,
1994
, “
A Forward and Reverse Displacement Analysis of a 6-DOF in-Parallel Manipulator
,”
Mech. Mach. Theory
,
29
(
1
), pp.
115
124
.10.1016/0094-114X(94)90024-8
111.
Gosselin
,
C.
,
Laliberte
,
T.
, and
Veillette
,
A.
,
2015
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms with Unlimited Rotational Capability
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
457
467
.10.1109/TRO.2015.2409433
112.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2019
, “
Exploiting the Kinematic Redundancy of a (6 + 3) Degrees-of-Freedom Parallel Mechanism
,”
ASME J. Mech. Des.
,
11
(
2
), p.
021005
.10.1115/1.4042346
113.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2018
, “
Kinematically Redundant Planar Parallel Mechanisms: Kinematics, Workspace and Trajectory Planning
,”
Mech. Mach. Theory
,
119
, pp.
91
105
.10.1016/j.mechmachtheory.2017.08.022
114.
Wampler
,
C.
,
1987
, “
Inverse Kinematic Functions for Redundant Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
4
, Raleigh, NC, Mar. 31–Apr. 3, pp.
610
617
.
115.
Galicki
,
M.
,
2000
, “
Time-Optimal Controls of Kinematically Redundant Manipulators with Geometric Constraints
,”
IEEE Trans. Rob. Autom.
,
16
(
1
), pp.
89
93
.10.1109/70.833194
116.
Ma
,
S.
, and
Watanabe
,
M.
,
2004
, “
Time Optimal Path-Tracking Control of Kinematically Redundant Manipulators
,”
JSME Int. J. Ser. C Mech. Syst., Mach. Elem. Manuf.
,
47
(
2
), pp.
582
590
.10.1299/jsmec.47.582
117.
Gibson
,
C.
, and
Hunt
,
K.
,
1990
, “
Geometry of Screw Systems–1: Screws: Genesis and Geometry
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.10.1016/0094-114X(90)90103-Q
118.
Gibson
,
C.
, and
Hunt
,
K.
,
1990
, “
Geometry of Screw Systems–2: Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
11
27
.10.1016/0094-114X(90)90104-R
119.
Martinez
,
J. R.
, and
Duffy
,
J.
,
1992
, “
Classification of Screw Systems–I: One- and Two-Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
459
470
.10.1016/0094-114X(92)90037-I
120.
Martinez
,
J. R.
, and
Duffy
,
J.
,
1992
, “
Classification of Screw Systems–II: Three-Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
471
490
.10.1016/0094-114X(92)90038-J
121.
Merlet
,
J.
,
1991
, “
Singularity Configurations of Parallel Manipulators and Grassman Geometry
,”
Int. J. Rob. Res.
,
10
(
2
), pp.
123
134
.10.1177/027836498900800504
122.
Hao
,
F.
, and
McCarthy
,
J. M.
,
1998
, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Rob. Syst.
,
15
(
1
), pp.
43
55
.10.1002/(SICI)1097-4563(199812)15:1<43::AID-ROB4>3.0.CO;2-S
123.
Bonev
,
I. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2003
, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
573
581
.10.1115/1.1582878
124.
Wolf
,
A.
, and
Shoham
,
M.
,
2003
, “
Investigation of Parallel Manipulators Using Linear Complex Approximation
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
564
572
.10.1115/1.1582876
125.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singular Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
126.
Tsai
,
L.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
New York
.
127.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
, 2nd ed.,
Springer
,
Berlin
.
128.
Whitney
,
D. E.
,
1969
, “
Resolved Motion Rate Control of Manipulators and Human Prostheses
,”
IEEE Trans. Man-Mach. Syst.
,
10
(
2
), pp.
47
53
.10.1109/TMMS.1969.299896
129.
Ascher
,
U. M.
,
Chin
,
H.
, and
Reich
,
S.
,
1994
, “
Stabilization of Daes and Invariant Manifolds
,”
Numerische Math.
,
67
(
2
), pp.
131
149
.10.1007/s002110050020
130.
Ascher
,
U. M.
,
1997
, “
Stabilization of Invariants of Discretized Differential Systems
,”
Numer. Algorithms
,
14
(
1/3
), pp.
1
24
.10.1023/A:1019144409525
131.
Gosselin
,
C.
,
1996
, “
Parallel Computational Algorithms for the Kinematics and Dynamics of Planar and Spatial Parallel Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
1
), pp.
22
28
.10.1115/1.2801147
132.
Kreyszig
,
E.
,
1959
,
Differential Geometry
,
Courier Corporation
,
Toronto, ON, Canada
.
133.
Müller
,
A.
,
2016
, “
Coordinate Mappings for Rigid Body Motions
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021010
.10.1115/1.4034730
134.
Müller
,
A.
,
2019
, “An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains with Applications in Robotics and Mechanism Theory,”
Mech. Mach. Theory
,
142
, p. 103594.https://doi.org/10.1016/j.mechmachtheory.2019.103594
You do not currently have access to this content.