Abstract

Shape memory polymers (SMPs) and SMP composites (SMPCs) have been widely employed in several fields and exhibit excellent self-actuation, deformation, and self-adaption. Establishing reasonable constitutive models is vital for understanding the shape memory mechanism and expanding its applications. Moreover, the mechanical response of SMPs under different conditions can be predicted, facilitating their precise control. The internal mechanism for the shape memory behavior in most SMPs is thermal actuation. This study reviews the theories of thermally actuated SMPs, rheological and phase transition concept models, and models combining the rheology and phase transition concepts. Furthermore, the constitutive models of particulate-reinforced SMPCs, carbon-fiber-reinforced SMPCs, and the buckling behavior of SMPCs are summarized. This study is expected to help solve the remaining issues rapidly and contribute to the establishment of rational constitutive models for SMPs and SMPCs.

References

1.
Zhao
,
W.
,
Liu
,
L. W.
,
Zhang
,
F. H.
,
Leng
,
J. S.
, and
Liu
,
Y. J.
,
2019
, “
Shape Memory Polymers and Their Composites in Biomedical Applications
,”
Mat. Sci. Eng. C-Mater.
,
97
, pp.
864
883
.10.1016/j.msec.2018.12.054
2.
Zhao, W., Yue, C. B., Liu, L. W., Leng, J. S., and Liu Y. J., 2023, “Mechanical Behavior Analyses of 4D Printed Metamaterials Structures With Excellent Energy Absorption Ability,”
Compos. Struct.
, 304, p.
116360
.10.1016/j.compstruct.2022.116360
3.
Zhao
,
W.
,
Zhang
,
F. H.
,
Leng
,
J. S.
, and
Liu
,
Y. J.
,
2019
, “
Personalized 4D Printing of Bioinspired Tracheal Scaffold Concept Based on Magnetic Stimulated Shape Memory Composites
,”
Compos. Sci. Technol.
,
184
, p.
107866
.10.1016/j.compscitech.2019.107866
4.
Zhao
,
W.
,
Huang
,
Z. P.
,
Liu
,
L. W.
,
Wang
,
W. B.
,
Leng
,
J. S.
, and
Liu
,
Y. J.
,
2021
, “
Porous Bone Tissue Scaffold Concept Based on Shape Memory PLA/Fe3O4
,”
Compos. Sci. Technol.
,
203
, p.
108563
.10.1016/j.compscitech.2020.108563
5.
Urbina
,
L.
,
Alonso-Varona
,
A.
,
Saralegi
,
A.
,
Palomares
,
T.
,
Eceiza
,
A.
,
Corcuera
,
M.
, and
Retegi
,
A.
,
2019
, “
Hybrid and Biocompatible Cellulose/Polyurethane Nanocomposites With Water-Activated Shape Memory Properties
,”
Carbohyd. Polym.
,
216
(
15
), pp.
86
96
.10.1016/j.carbpol.2019.04.010
6.
Zhao, W., Li, N., Liu, L. W., Leng, J. S., and Liu, Y. J., 2022, “Origami Derived Self-Assembly Stents Fabricated via 4D Printing,”
Compos. Struct.
, 293, p.
115669
.10.1016/j.compstruct.2022.115669
7.
Zhao
,
W.
,
Huang
,
Z. P.
,
Liu
,
L. W.
,
Wang
,
W. B.
,
Leng
,
J. S.
, and
Liu
,
Y. J.
,
2022
, “
Bionic Design and Performance Research of Tracheal Stent Based on Shape Memory Polycaprolactone
,”
Compos. Sci. Technol.
,
229
, p.
109671
.10.1016/j.compscitech.2022.109671
8.
Wang
,
F.
,
Yuan
,
C.
,
Wang
,
D.
,
Rosen
,
D. W.
, and
Ge
,
Q.
,
2020
, “
A Phase Evolution Based Constitutive Model for Shape Memory Polymer and Its Application in 4D Printing
,”
Smart Mater. Struct.
,
29
(
5
), p.
055016
.10.1088/1361-665X/ab7ab0
9.
Mao
,
Y.
,
Chen
,
F.
,
Hou
,
S.
,
Qi
,
J.
, and
Yu
,
K.
,
2019
, “
A Viscoelastic Model for Hydrothermally Activated Malleable Covalent Network Polymer and Its Application in Shape Memory Analysis
,”
J. Mech. Phys. Solids
,
127
, pp.
239
265
.10.1016/j.jmps.2019.03.016
10.
Wang
,
X.
,
Lu
,
H. B.
,
Shi
,
X.
,
Yu
,
K.
, and
Fu
,
Y. Q.
,
2019
, “
A Thermomechanical Model of Multi-Shape Memory Effect for Amorphous Polymer With Tunable Segment Compositions
,”
Compos. Part B-Eng.
,
160
, pp.
298
305
.10.1016/j.compositesb.2018.10.048
11.
Tobushi
,
H.
,
Hashimoto
,
T.
,
Hayashi
,
S.
, and
Yamada
,
E.
,
1997
, “
Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series
,”
J. Intel. Mat. Syst. Str.
,
8
(
8
), pp.
711
718
.10.1177/1045389X9700800808
12.
Lin
,
J.
, and
Chen
,
L.
,
1999
, “
Shape-Memorized Crosslinked Estertype Polyurethane and Its Mechanical Viscoelastic Model
,”
J. Appl. Polym. Sci.
,
73
(
7
), pp.
1305
1319
.10.1002/(SICI)1097-4628(19990815)73:7<1305::AID-APP24>3.0.CO;2-5
13.
Tobushi
,
H.
,
Okumura
,
K.
,
Hayashi
,
S.
, and
Ito
,
N.
,
2001
, “
Thermomechanical Constitutive Model of Shape Memory Polymer
,”
Mech. Mater.
,
33
(
10
), pp.
545
554
.10.1016/S0167-6636(01)00075-8
14.
Abrahamson
,
E. R.
,
Lake
,
M. S.
,
Munshi
,
N. A.
, and
Gall
,
K.
,
2003
, “
Shape Memory Mechanics of an Elastic Memory Composite Resin
,”
J. Intel. Mat. Syst. Str.
,
14
(
10
), pp.
623
632
.10.1177/104538903036213
15.
Morshedian
,
J.
,
Khonakdar
,
H. A.
, and
Rasouli
,
S.
,
2005
, “
Modeling of Shape Memory Induction and Recovery in Heat Shrinkable Polymers
,”
Macromol. Theor. Simul.
,
14
(
7
), pp.
428
434
.10.1002/mats.200400108
16.
Khonakdar
,
H. A.
,
Jafari
,
S. H.
,
Rasoul
,
S.
,
Morshedian
,
J.
, and
Abedini
,
H.
,
2007
, “
Investigation and Modeling of Temperature Dependence Recovery Behavior of Shape Memory Crosslinked Polyethylene
,”
Macromol. Theor. Simul.
,
16
(
1
), pp.
43
52
.10.1002/mats.200600041
17.
Bonner
,
M.
,
Oca
,
H. M. D.
,
Brown
,
M.
, and
Ward
,
I. M.
,
2010
, “
A Novel Approach to Predict the Recovery Time of Shape Memory Polymers
,”
Polymers
,
51
(
6
), pp.
1432
1436
.10.1016/j.polymer.2010.01.058
18.
Heuchel
,
M.
,
Cui
,
J.
,
Kratz
,
K.
,
Kosmella
,
H.
, and
Lendlein
,
A.
,
2010
, “
Relaxation Based Modeling of Tunable Shape Recovery Kinetics Observed Under Isothermal Conditions for Amorphous Shape-Memory Polymers
,”
Polymers
,
51
(
26
), pp.
6212
6218
.10.1016/j.polymer.2010.10.051
19.
Li
,
Y. X.
,
Guo
,
S. S.
,
He
,
Y. H.
, and
Liu
,
Z. S.
,
2015
, “
A Simplified Constitutive Model for Predicting Shape Memory Polymers Deformation Behavior
,”
Int. J. Comput. Mat. Sci.
,
04
(
1
), p.
1550001
.10.1142/S2047684115500013
20.
Diani
,
J.
,
Liu
,
Y.
, and
Gall
,
K.
,
2006
, “
Finite Strain 3D Thermoviscoelastic Constitutive Model for Shape Memory Polymers
,”
Polym. Eng. Sci.
,
46
(
4
), pp.
486
492
.10.1002/pen.20497
21.
Wong
,
Y. S.
,
Stachurski
,
Z.
, and
Venkatraman
,
S.
,
2011
, “
Modeling Shape Memory Effect in Uncrosslinked Amorphous Biodegradable Polymer
,”
Polymers
,
52
(
3
), pp.
874
880
.10.1016/j.polymer.2010.12.004
22.
Ghosh
,
P.
, and
Srinivasa
,
A. R.
,
2011
, “
A Two-Network Thermomechanical Model of a Shape Memory Polymer
,”
Int. J. Eng. Sci.
,
49
(
9
), pp.
823
838
.10.1016/j.ijengsci.2011.04.003
23.
Ghosh
,
P.
, and
Srinivasa
,
A. R.
,
2013
, “
A Two-Network Thermomechanical Model and Parametric Study of the Response of Shape Memory Polymers
,”
Mech. Mater.
,
60
, pp.
1
17
.10.1016/j.mechmat.2012.12.005
24.
Ghosh
,
P.
, and
Srinivasa
,
A. R.
,
2014
, “
Development of a Finite Strain Two Network Model for Shape Memory Polymers Using QR Decomposition
,”
Int. J. Eng. Sci.
,
81
, pp.
177
191
.10.1016/j.ijengsci.2014.02.005
25.
Balogun
,
O. A.
, and
Mo
,
C.
,
2014
, “
Shape Memory Polymers: Three-Dimensional Isotropic Modeling
,”
Smart Mater. Struct.
,
23
(
4
), p.
045008
.10.1088/0964-1726/23/4/045008
26.
Olaniyi
,
A.
,
Balogun
, and
Changki
,
M.
,
2016
, “
Three-Dimensional Thermo-Mechanical Viscoelastic Model for Shape Memory Polymers With Binding Factor
,”
J. Intel. Mat. Syst. Str.
,
27
(
14
), pp.
1908
1916
.10.1177/1045389X15610905
27.
Chen
,
J. G.
,
Liu
,
L. W.
,
Liu
,
Y. J.
, and
Leng
,
J. S.
,
2014
, “
Thermoviscoelastic Shape Memory Behavior for Epoxy-Shape Memory Polymer
,”
Smart Mater. Struct.
,
23
(
5
), p.
055025
.10.1088/0964-1726/23/5/055025
28.
Nguyen
,
T. D.
,
Qi
,
H. J.
,
Castro
,
F.
, and
Long
,
K. N.
,
2008
, “
A Thermoviscoelastic Model for Amorphous Shape Memory Polymers: Incorporating Structural and Stress Relaxation
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2792
2814
.10.1016/j.jmps.2008.04.007
29.
Xiao
,
R.
,
Choi
,
J.
,
Lakhera
,
N.
,
Yakacki
,
C. M.
,
Frick
,
C. P.
, and
Nguyen
,
T. D.
,
2013
, “
Modeling the Glass Transition of Amorphous Networks for Shape-Memory Behavior
,”
J. Mech. Phys. Solids
,
61
(
7
), pp.
1612
1635
.10.1016/j.jmps.2013.02.005
30.
Buckley
,
C. P.
,
Prisacariu
,
C.
, and
Caraculacu
,
A.
,
2007
, “
Novel Triol-Crosslinked Polyurethanes and Their Thermorheological Characterization as Shape-Memory Materials
,”
Polymers
,
48
(
5
), pp.
1388
1396
.10.1016/j.polymer.2006.12.051
31.
Diani
,
J.
,
Gilormini
,
P.
,
Fredy
,
C.
, and
Rousseau
,
I.
,
2012
, “
Predicting Thermal Shape Memory of Crosslinked Polymer Networks From Linear Viscoelasticity
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
793
799
.10.1016/j.ijsolstr.2011.11.019
32.
Arrieta
,
S.
,
Diani
,
J.
, and
Gilormini
,
P.
,
2014
, “
Experimental Characterization and Thermoviscoelastic Modeling of Strain and Stress Recoveries of an Amorphous Polymer Network
,”
Mech. Mater.
,
68
, pp.
95
103
.10.1016/j.mechmat.2013.08.008
33.
Anand
,
L.
,
Ames
,
N. M.
,
Srivastava
,
V.
, and
Chester
., and
S. A.
,
2009
, “
A Thermo-Mechanically-Coupled Theory for Large Deformations of Amorphous Polymers. Part I: Formulation
,”
Int. J. Plast.
,
25
(
8
), pp.
1474
1494
.10.1016/j.ijplas.2008.11.004
34.
Ames
,
N. M.
,
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2009
, “
A Thermo-Mechanically-Coupled Theory for Large Deformations of Amorphous Polymers. Part II: Applications
,”
Int. J. Plast.
,
25
(
8
), pp.
1495
1539
.10.1016/j.ijplas.2008.11.005
35.
Srivastava
,
V.
,
Chester
,
S. A.
,
Ames
,
N. M.
, and
Anand
,
L.
,
2010
, “
A Thermo-Mechanically-Coupled Large-Deformation Theory for Amorphous Polymers in a Temperature Range Which Spans Their Glass Transition
,”
Int. J. Plast.
,
26
(
8
), pp.
1138
1182
.10.1016/j.ijplas.2010.01.004
36.
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2010
, “
Thermally Actuated Shape-Memory Polymers: Experiments, Theory, and Numerical Simulations
,”
J. Mech. Phys. Solids
,
58
(
8
), pp.
1100
1124
.10.1016/j.jmps.2010.04.004
37.
Li
,
G. Q.
, and
Xu
,
W.
,
2011
, “
Thermomechanical Behavior of Thermoset Shape Memory Polymer Programmed by Cold-Compression: Testing and Constitutive Modeling
,”
J. Mech. Phys. Solids
,
59
(
6
), pp.
1231
1250
.10.1016/j.jmps.2011.03.001
38.
Westbrook
,
K. K.
,
Kao
,
P. H.
,
Castro
,
F.
,
Ding
,
Y. F.
, and
Qi
,
H. J.
,
2011
, “
A 3D Finite Deformation Constitutive Model for Amorphous Shape Memory Polymers: A Multi-Branch Modeling Approach for Nonequilibrium Relaxation Processes
,”
Mech. Mater.
,
43
(
12
), pp.
853
869
.10.1016/j.mechmat.2011.09.004
39.
Yu
,
K.
,
Xie
,
T.
,
Leng
,
J. S.
,
Ding
,
Y. F.
, and
Qi
,
H. J.
,
2012
, “
Mechanisms of Multi-Shape Memory Effects and Associated Energy Release in Shape Memory Polymers
,”
Soft Matter
,
8
(
20
), pp.
5687
5695
.10.1039/c2sm25292a
40.
Yu
,
K.
,
McClung
,
A. J. W.
,
Tandon
,
G. P.
,
Baur
,
J. W.
, and
Qi
,
H. J.
,
2014
, “
A Thermomechanical Constitutive Model for an Epoxy Based Shape Memory Polymer and Its Parameter Identifications
,”
Mech. Time-Depend. Mater.
,
18
(
2
), pp.
453
474
.10.1007/s11043-014-9237-5
41.
Yu
,
K.
,
Li
,
H.
,
McClung
,
A. J. W.
,
Tandon
,
G. P.
,
Baur
,
J. W.
, and
Qi
,
H. J.
,
2016
, “
Cyclic Behaviors of Amorphous Shape Memory Polymers
,”
Soft Matter.
,
12
(
13
), pp.
3234
3245
.10.1039/C5SM02781K
42.
Sweeney
,
J.
,
Bonner
,
M.
, and
Ward
,
I. M.
,
2014
, “
Modelling of Loading, Stress Relaxation and Stress Recovery in a Shape Memory Polymer
,”
J. Mech. Behav. Biomed.
,
37
, pp.
12
23
.10.1016/j.jmbbm.2014.05.011
43.
Ge
,
Q.
,
Yu
,
K.
,
Ding
,
Y. F.
, and
Qi
,
H. J.
,
2012
, “
Prediction of Temperature-Dependent Free Recovery Behaviors of Amorphous Shape Memory Polymers
,”
Soft Matter
,
2012
8
(
43
), pp.
11098
11105
.10.1039/c2sm26249e
44.
Gu
,
J. P.
,
Sun
,
H. Y.
, and
Fang
,
C. Q.
,
2015
, “
A Multi-Branch Finite Deformation Constitutive Model for a Shape Memory Polymer Based Syntactic Foam
,”
Smart Mater. Struct.
,
24
(
2
), p.
025011
.10.1088/0964-1726/24/2/025011
45.
Nguyen
,
T. D.
,
Yakacki
,
C. M.
,
Brahmbhatt
,
P. D.
, and
Chambers
,
M. L.
,
2010
, “
Modeling the Relaxation Mechanisms of Amorphous Shape Memory Polymers
,”
Adv. Mater.
,
22
(
31
), pp.
3411
3423
.10.1002/adma.200904119
46.
Fang
,
C. Q.
,
Sun
,
H. Y.
, and
Gu
,
J. P.
,
2016
, “
A Fractional Calculus Approach to the Prediction of Free Recovery Behaviors of Amorphous Shape Memory Polymers
,”
J. Mech.
,
32
(
1
), pp.
11
17
.10.1017/jmech.2015.82
47.
Li
,
Z.
,
Wang
,
H.
,
Xiao
,
R.
, and
Yang
,
S.
,
2017
, “
A Variable-Order Fractional Differential Equation Model of Shape Memory Polymers
,”
Chaos. Soliton. Fract.
,
102
, pp.
473
485
.10.1016/j.chaos.2017.04.042
48.
Pan
,
Z.
, and
Liu
,
Z.
,
2018
, “
A Novel Fractional Viscoelastic Constitutive Model for Shape Memory Polymers
,”
J. Polym. Sci. Pol. Phys.
,
56
(
16
), pp.
1125
1134
.10.1002/polb.24631
49.
Zeng
,
H.
,
Leng
,
J.
,
Gu
,
J.
,
Yin
,
C.
, and
Sun
,
H.
,
2018
, “
Modeling the Strain Rate-, Hold Time-, and Temperature-Dependent Cyclic Behaviors of Amorphous Shape Memory Polymers
,”
Smart Mater. Struct.
,
27
(
7
), p.
075050
.10.1088/1361-665X/aaca50
50.
Zeng
,
H.
,
Xie
,
Z. M.
,
Gu
,
J. P.
, and
Sun
,
H. Y.
,
2018
, “
A 1D Thermomechanical Network Transition Constitutive Model Coupled With Multiple Structural Relaxation for Shape Memory Polymers
,”
Smart Mater. Struct.
,
27
(
3
), p.
035024
.10.1088/1361-665X/aaae29
51.
Liu
,
Y.
,
Gall
,
K.
,
Dunn
,
M. L.
,
Greenberg
,
A. R.
, and
Diani
,
J.
,
2006
, “
Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling
,”
Int. J. Plast.
,
22
(
2
), pp.
279
313
.10.1016/j.ijplas.2005.03.004
52.
Chen
,
Y. C.
, and
Lagoudas
,
D. C.
,
2008
, “
A Constitutive Theory for Shape Memory Polymers. Part I: Large Deformations
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1752
1765
.10.1016/j.jmps.2007.12.005
53.
Chen
,
Y. C.
, and
Lagoudas
,
D. C.
,
2008
, “
A Constitutive Theory for Shape Memory Polymers. Part II: A Linearized Model for Small Deformations
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1766
1778
.10.1016/j.jmps.2007.12.004
54.
Pan
,
Z.
,
Zhou
,
Y.
,
Zhang
,
N.
, and
Liu
,
Z. S.
,
2018
, “
A Modified Phase Based Constitutive Model for Shape Memory Polymers
,”
Polym. Int.
,
67
(
12
), pp.
1677
1683
.10.1002/pi.5698
55.
Barot
,
G.
, and
Rao
,
I.
,
2006
, “
Constitutive Modeling of the Mechanics Associated With Crystallizable Shape Memory Polymers
,”
J. Z. Angew. Math. Phys.
,
57
(
4
), pp.
652
681
.10.1007/s00033-005-0009-6
56.
Barot
,
G.
,
Rao
,
I. J.
, and
Rajagopal
,
K. R.
,
2008
, “
A Thermodynamic Framework for the Modeling of Crystallizable Shape Memory Polymers
,”
Int. J. Eng. Sci.
,
46
(
4
), pp.
325
351
.10.1016/j.ijengsci.2007.11.008
57.
Volk
,
B. L.
,
Lagoudas
,
D. C.
, and
Maitland
,
D. J.
,
2011
, “
Characterizing and Modeling the Free Recovery and Constrained Recovery Behavior of a Polyurethane Shape Memory Polymer
,”
Smart Mater. Struct.
,
20
(
9
), p.
094004
.10.1088/0964-1726/20/9/094004
58.
Volk
,
B. L.
,
Lagoudas
,
D. C.
,
Chen
,
Y. C.
, and
Whitley
,
K. S.
,
2010
, “
Analysis of the Finite Deformation Response of Shape Memory Polymers: I. Thermomechanical Characterization
,”
Smart Mater. Struct.
,
19
(
7
), p.
075005
.10.1088/0964-1726/19/7/075005
59.
Volk
,
B. L.
,
Lagoudas
,
D. C.
, and
Chen
,
Y. C.
,
2010
, “
Analysis of the Finite Deformation Response of Shape Memory Polymers: II. 1D Calibration and Numerical Implementation of a Finite Deformation, Thermoelastic Model
,”
Smart Mater. Struct.
,
19
(
7
), p.
075006
.10.1088/0964-1726/19/7/075006
60.
Volk
,
B. L.
,
Dapino
,
M. J.
,
Lagoudas
,
D. C.
,
Ounaies
,
Z.
, and
Chen
,
Y. C.
,
2008
, “
Thermomechanical Characterization of the Nonlinear Rate-Dependent Response of Shape Memory Polymers
,”
Behav. Mech. Multifun. Compos. Mater.
, 6929, pp.
261
269
.10.1117/12.776372
61.
Qi
,
H. J.
,
Nguyen
,
T. D.
,
Castro
,
F.
,
Yakacki
,
C. M.
, and
Shandas
,
R.
,
2008
, “
Finite Deformation Thermo-Mechanical Behavior of Thermally Induced Shape Memory Polymers
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1730
1751
.10.1016/j.jmps.2007.12.002
62.
Gilormini
,
P.
, and
Diani
,
J.
,
2012
, “
On Modeling Shape Memory Polymers as Thermoelastic Two-Phase Composite Materials
,”
C. R. Mec.
,
340
(
4–5
), pp.
338
348
.10.1016/j.crme.2012.02.016
63.
Kazakevic˘iūtė-Makovska
,
R.
,
Steeb
,
H.
, and
Aydin
,
A. Ö.
,
2012
, “
On the Evolution Law for the Frozen Fraction in Linear Theories of Shape Memory Polymers
,”
Arch. Appl. Mech.
,
82
(
8
), pp.
1103
1115
.10.1007/s00419-012-0615-7
64.
Baghani
,
M.
,
Naghdabadi
,
R.
,
Arghavani
,
J.
, and
Sohrabpour
,
S.
,
2012
, “
A Constitutive Model for Shape Memory Polymers With Application to Torsion of Prismatic Bars
,”
J. Intel. Mat. Syst. Str.
,
23
(
2
), pp.
107
116
.10.1177/1045389X11431745
65.
Baghani
,
M.
,
Naghdabadi
,
R.
, and
Arghavani
,
J.
,
2013
, “
A Large Eformation Framework for Shape Memory Polymers: Constitutive Modeling and Finite Element Implementation
,”
J. Intel. Mat. Syst. Str.
,
24
(
1
), pp.
21
32
.10.1177/1045389X12455728
66.
Yang
,
Q.
, and
Li
,
G.
,
2016
, “
Temperature and Rate Dependent Thermomechanical Modeling of Shape Memory Polymers With Physics Based Phase Evolution Law
,”
Int. J. Plast.
,
80
, pp.
168
186
.10.1016/j.ijplas.2015.09.005
67.
Ge, Q., Serjouei, A., and Qi, H. J., 2016, “Thermomechanics of Printed Anisotropic Shape Memory Elastomeric Composites,”
Int. J. Solids Struct.
, 102, pp.
186
199
.10.1088/0964-1726/22/5/055009
68.
Li
,
Y. X.
,
Hu
,
J. Y.
, and
Liu
,
Z. S.
,
2017
, “
A Constitutive Model of Shape Memory Polymers Based on Glass Transition and the Concept of Frozen Strain Release Rate
,”
Int. J. Solids Struct.
,
124
, pp.
252
263
.10.1016/j.ijsolstr.2017.06.039
69.
Lu
,
H. B.
,
Wang
,
X. D.
,
Yao
,
Y. T.
, and
Fu
,
Y. Q.
,
2018
, “
A ‘Frozen Volume’ Transition Model and Working Mechanism for the Shape Memory Effect in Amorphous Polymers
,”
Smart Mater. Struct.
,
27
(
6
), p.
065023
.10.1088/1361-665X/aab8af
70.
Arvanitakis
,
A. I.
,
2019
, “
A Constitutive Level-Set Model for Shape Memory Polymers and Shape Memory Polymeric Composites
,”
Arch. Appl. Mech.
,
89
(
9
), pp.
1939
1951
.10.1007/s00419-019-01553-w
71.
Kim
,
J. H.
,
Kang
,
T. J.
, and
Yu
,
W. R.
,
2010
, “
Thermo-Mechanical Constitutive Modeling of Shape Memory Polyurethanes Using a Phenomenological Approach
,”
Int. J. Plast.
,
26
(
2
), pp.
204
218
.10.1016/j.ijplas.2009.06.006
72.
Gu
,
J.
,
Sun
,
H.
, and
Fang
,
C.
,
2015
, “
A Phenomenological Constitutive Model for Shape Memory Polyurethanes
,”
J. Intel. Mat. Syst. Str.
,
26
(
5
), pp.
517
526
.10.1177/1045389X14530595
73.
Wang
,
Z. D.
,
Li
,
D. F.
,
Xiong
,
Z. Y.
, and
Chang
,
R. N.
,
2009
, “
Modeling Thermomechanical Behaviors of Shape Memory Polymer
,”
J. Appl. Polym. Sci.
,
113
(
1
), pp.
651
656
.10.1002/app.29656
74.
Reese
,
S.
,
Bo
, ¨
L. M.
, and
Christ
,
D.
,
2010
, “
Finite Element-Based Multi-Phase Modelling of Shape Memory Polymer Stents
,”
Comput. Method. Appl. Mech. Eng.
,
199
(
21–22
), pp.
1276
1286
.10.1016/j.cma.2009.08.014
75.
Guo
,
X.
,
Liu
,
L.
,
Liu
,
Y.
,
Zhou
,
B.
, and
Leng
,
J.
,
2014
, “
Constitutive Model for a Stress-and Thermal-Induced Phase Transition in a Shape Memory Polymer
,”
Smart Mater. Struct.
,
23
(
10
), p.
105019
.10.1088/0964-1726/23/10/105019
76.
Guo
,
X. G.
,
Liu
,
L. W.
,
Zhou
,
B.
,
Liu
,
Y. J.
, and
Leng
,
J. S.
,
2015
, “
Influence of Strain Rates on the Mechanical Behaviors of Shape Memory Polymer
,”
Smart Mater. Struct.
,
24
(
9
), p.
095009
.10.1088/0964-1726/24/9/095009
77.
Guo
,
X.
,
Liu
,
L.
,
Zhou
,
B.
,
Liu
,
Y. J.
, and
Leng
,
J. S.
,
2016
, “
Constitutive Model for Shape Memory Polymer Based on the Viscoelasticity and Phase Transition Theories
,”
J. Intel. Mat. Syst. Str.
,
27
(
3
), pp.
314
323
.10.1177/1045389X15571380
78.
Scalet
,
G.
,
Auricchio
,
F.
,
Bonetti
,
E.
,
Castellani
,
L.
,
Ferri
,
D.
,
Pachera
,
M.
, and
Scavello
,
F.
,
2015
, “
An Experimental, Theoretical and Numerical Investigation of Shape Memory Polymers
,”
Int. J. Plast.
,
67
, pp.
127
147
.10.1016/j.ijplas.2014.10.006
79.
Park
,
H.
,
Harrison
,
P.
,
Guo
,
Z. Y.
,
Lee
,
M. G.
, and
Yu
,
W. R.
,
2016
, “
Three-Dimensional Constitutive Model for Shape Memory Polymers Using Multiplicative Decomposition of the Deformation Gradient and Shape Memory Strains
,”
Mech. Mater.
,
93
, pp.
43
62
.10.1016/j.mechmat.2015.10.014
80.
Bouaziz
,
R.
,
Roger
,
F.
, and
Prashantha
,
K.
,
2017
, “
Thermomechanical Modeling of Semi-Crystalline Thermoplastic Shape Memory Polymer Under Large Strain
,”
Smart Mater. Struct.
,
26
(
5
), p.
055009
.10.1088/1361-665X/aa6690
81.
Guo
,
J. M.
,
Liu
,
J.
,
B.
,
A.
,
Wang
,
Z. Q.
,
He
,
X. F.
,
Hu
,
L. F.
,
Tong
,
L. Y.
, and
Tang
,
X. J.
,
2017
, “
A Thermodynamics Viscoelastic Constitutive Model for Shape Memory Polymers
,”
J. Alloy. Compd.
,
705
, pp.
146
155
.10.1016/j.jallcom.2017.02.142
82.
Li
,
Y. X.
,
He
,
Y. H.
, and
Liu
,
Z. S.
,
2017
, “
A Viscoelastic Constitutive Model for Shape Memory Polymers Based on Multiplicative Decompositions of the Deformation Gradient
,”
Int. J. Plast.
,
91
, pp.
300
317
.10.1016/j.ijplas.2017.04.004
83.
Zhao
,
W.
,
Liu
,
L. W.
,
Leng
,
J. S.
, and
Liu
,
Y. J.
,
2020
, “
Thermo-Mechanical Behavior Prediction of Shape Memory Polymers Based on Multiplicative Decompositions of the Deformation Gradient
,”
Mech. Mater.
,
143
, p.
103263
.10.1016/j.mechmat.2019.103263
84.
Pan'kov
,
A. A.
,
1999
, “
A Self-Consistent Statistical Mechanics Approach for Determining Effective Elastic Properties of Composites
,”
Theor. Appl. Fract. Mech.
,
31
(
3
), pp.
157
161
.10.1016/S0167-8442(99)00010-5
85.
Huang
,
Y.
,
Hu
,
K. X.
,
Wei
,
X.
, and
Chandra
,
A.
,
1994
, “
A Generalized Self-Consistent Mechanics Method for Compositematerials With Multiphase Inclusions
,”
J. Mech. Phys. Solids
,
42
(
3
), pp.
491
504
.10.1016/0022-5096(94)90028-0
86.
Huang
,
Y.
,
Hu
,
K. X.
, and
Chandra
,
A.
,
1994
, “
A Self-Consistent Mechanics Method for Solids Containing Inclusions and a General Distribution of Cracks
,”
Acta. Mech.
,
105
(
1–4
), pp.
69
84
.10.1007/BF01183943
87.
Huang
,
Y.
,
Hu
,
K. X.
, and
Chandra
,
A.
,
1994
, “
A Generalized Self-Consistent Mechanics Method for Microcracked Solids
,”
J. Mech. Phys. Solids
,
42
(
8
), pp.
1273
1291
.10.1016/0022-5096(94)90035-3
88.
Huang
,
Y.
, and
Hu
,
K. X.
,
1995
, “
A Generalized Self-Consistent Mechanics Method for Solids Containing Elliptical Inclusions
,”
ASME J. Appl. Mech. Trans. ASME
,
62
(
3
), pp.
566
572
.10.1115/1.2895982
89.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
1973
,
21
(
5
), pp.
571
574
.10.1016/0001-6160(73)90064-3
90.
Yang
,
Q. S.
,
He
,
X. Q.
,
Liu
,
X.
,
Leng
,
F. F.
, and
Mai
,
Y. W.
,
2012
, “
The Effective Properties and Local Aggregation Effect of CNT/SMP Composites
,”
Compos. Part B Eng.
,
43
(
1
), pp.
33
38
.10.1016/j.compositesb.2011.04.027
91.
Xu
,
W.
, and
Li
,
G. Q.
,
2010
, “
Constitutive Modeling of Shape Memory Polymer Based Self-Healing Syntactic Foam
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1306
1316
.10.1016/j.ijsolstr.2010.01.015
92.
Xu
,
W.
, and
Li
,
G. Q.
,
2011
, “
Thermoviscoplastic Modeling and Testing of Shape Memory Polymer Based Self-Healing Syntactic Foam Programmed at Glassy Temperature
,”
ASME J. Appl. Mech.
,
78
(
6
), p.
061017
.10.1115/1.4004554
93.
Baghani
,
M.
,
Naghdabadi
,
R.
,
Arghavani
,
J.
, and
Sohrabpour
,
S.
,
2012
, “
A Thermodynamically-Consistent 3D Constitutive Model for Shape Memory Polymers
,”
Int. J. Plast.
,
35
, pp.
13
30
.10.1016/j.ijplas.2012.01.007
94.
Abishera
,
R.
,
Velmurugan
,
R.
, and
Gopal
,
K. V. N.
,
2017
, “
Reversible Plasticity Shape Memory Effect in Epoxy/CNT Nanocomposites-A Theoretical Study
,”
Compos. Sci. Technol.
,
141
, pp.
145
153
.10.1016/j.compscitech.2017.01.020
95.
Jarali
,
C. S.
,
Madhusudan
,
M.
,
Vidyashankar
,
S.
, and
Raja
,
S.
,
2018
, “
A New Micromechanics Approach to the Application of Eshelby's Equivalent Inclusion Method in Three Phase Composites With Shape Memory Polymer Matrix
,”
Compos. Part B-Eng
,
152
, pp.
17
30
.10.1016/j.compositesb.2018.06.028
96.
Taherzadeh
,
M.
,
Baghani
,
M.
,
Baniassadi
,
M.
,
Abrinia
,
K.
, and
Safdari
,
M.
,
2016
, “
Modeling and Homogenization of Shape Memory Polymer Nanocomposites
,”
Compos. Part B-Eng.
,
91
, pp.
36
43
.10.1016/j.compositesb.2015.12.044
97.
Yin
,
C. X.
,
Zeng
,
H.
,
Gu
,
J. P.
,
Xie
,
Z. M.
, and
Sun
,
H. Y.
,
2019
, “
Modeling the Thermomechanical Behaviors of Particle Reinforced Shape Memory Polymer Composites
,”
Appl. Phys. A-Mater.
,
125
(
6
), p.
382
.10.1007/s00339-019-2672-z
98.
Zeng
,
H.
,
Leng
,
J.
,
Gu
,
J.
, and
Sun
,
H. Y.
,
2019
, “
Modeling the Thermomechanical Behaviors of Shape Memory Polymers and Their Nanocomposites by a Network Transition Theory
,”
Smart Mater. Struct.
,
28
(
6
), p.
065018
.10.1088/1361-665X/ab1156
99.
Yarali
,
E.
,
Baniassadi
,
M.
, and
Baghani
,
M.
,
2019
, “
Numerical Homogenization of Coiled Carbon Nanotube Reinforced Shape Memory Polymer Nanocomposites
,”
Smart Mater. Struct.
,
28
(
3
), p.
035026
.10.1088/1361-665X/ab02b6
100.
Zeng
,
H.
,
Pan
,
N.
,
Gu
,
J.
, and
Sun
,
H. Y.
,
2020
, “
Modeling the Thermoviscoelasticity of Transversely Isotropic Shape Memory Polymer Composites
,”
Smart Mater. Struct.
,
29
(
2
), p.
025012
.10.1088/1361-665X/ab6015
101.
Zhao
,
W.
,
Liu
,
L.
,
Leng
,
J.
, and
Liu
,
Y. J.
,
2019
, “
Thermo-Mechanical Behavior Prediction of Particulate Reinforced Shape Memory Polymer Composite
,”
Compos. Part B-Eng.
,
179
, p.
107455
.10.1016/j.compositesb.2019.107455
102.
Nishikawa
,
M.
,
Wakatsuki
,
K.
, and
Takeda
,
N.
,
2010
, “
Thermomechanical Experiment and Analysis on Shape Recovery Properties of Shape Memory Polymer Influenced by Fiber Reinforcement
,”
J. Mater. Sci.
,
45
(
14
), pp.
3957
3960
.10.1007/s10853-010-4545-x
103.
Nishikawa
,
M.
,
Wakatsuki
,
K.
,
Yoshimura
,
A.
, and
Takeda
,
N.
,
2012
, “
Effect of Fiber Arrangement on Shape Fixity and Shape Recovery in Thermally Activated Shape Memory Polymer-Based Composites
,”
Compos. Part A-Appl. Sci.
Manuf.,
43
(
1
), pp.
165
173
.10.1016/j.compositesa.2011.10.005
104.
Ge
,
Q.
,
Luo
,
X.
,
Rodriguez
,
E. D.
,
Zhang
,
X.
,
Mather
,
P. T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2012
, “
Thermomechanical Behavior of Shape Memory Elastomeric Composites
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
67
83
.10.1016/j.jmps.2011.09.011
105.
Tan
,
Q.
,
Liu
,
L. W.
,
Liu
,
Y. J.
, and
Leng
,
J. S.
,
2014
, “
Thermal Mechanical Constitutive Model of Fiber Reinforced Shape Memory Polymer Composite: Based on Bridging Model
,”
Compos. Part A-Appl. Sci. Manf.
,
64
, pp.
132
138
.10.1016/j.compositesa.2014.05.003
106.
Roh
,
J. H.
,
Kim
,
H. I.
, and
Lee
,
S. Y.
,
2015
, “
Viscoelastic Effect on Unfolding Behaviors of Shape Memory Composite Booms
,”
Compos. Struct.
,
133
, pp.
235
245
.10.1016/j.compstruct.2015.07.095
107.
Su
,
X.
, and
Peng
,
X.
,
2019
, “
A Lamination Model for Shape Memory Polymer/Woven Fabric Composites
,”
Int. J. Comput. Mat. Sci.
,
08
(
2
), p.
1950004
.10.1142/S2047684119500040
108.
Su
,
X.
,
Wang
,
Y.
, and
Peng
,
X.
,
2020
, “
An Anisotropic Visco-Hyperelastic Model for Thermally-Actuated Shape Memory Polymer-Based Woven Fabric-Reinforced Composites
,”
Int. J. Plast.
,
129
, p.
102697
.10.1016/j.ijplas.2020.102697
109.
Zeng
,
H.
,
Leng
,
J. S.
,
Gu
,
J. P.
, and
Sun
,
H. Y.
,
2020
, “
Modeling the Thermomechanical Behaviors of Short Fiber Reinforced Shape Memory Polymer Composites
,”
Int. J. Mech. Sci.
,
166
, p.
105212
.10.1016/j.ijmecsci.2019.105212
110.
Gu
,
J. P.
,
Leng
,
J. S.
,
Sun
,
H. Y.
,
Zeng
,
H.
, and
Cai
,
Z. B.
,
2019
, “
Thermomechanical Constitutive Modeling of Fiber Reinforced Shape Memory Polymer Composites Based on Thermodynamics With Internal State Variables
,”
Mech. Mater.
,
130
, pp.
9
19
.10.1016/j.mechmat.2019.01.004
111.
Guo
,
Z. Y.
,
Peng
,
X. Q.
, and
Moran
,
B.
,
2007
, “
Mechanical Response of Neo-Hookean Fiber Reinforced Incompressible Nonlinearly Elastic Solids
,”
J. Solids Struct.
,
44
(
6
), pp.
1949
1969
.10.1016/j.ijsolstr.2006.08.018
112.
Peng
,
X. Q.
,
Guo
,
Z. Y.
,
Du
,
T. L.
, and
Yu
,
W. R.
,
2013
, “
A Simple Anisotropic Hyperelastic Constitutive Model for Textile Fabrics With Application to Forming Simulation
,”
Compos. Part B-Eng.
,
52
, pp.
275
281
.10.1016/j.compositesb.2013.04.014
113.
Hong
,
S. B.
,
Jang
,
J. H.
,
Park
,
H.
,
Kim
,
J. G.
,
Goo
,
N. S.
, and
Yu
,
W. R.
,
2019
, “
Three-Dimensional Constitutive Model of Woven Fabric-Reinforced Shape Memory Polymer Composites Considering Thermal Residual Stress
,”
Smart Mater. Struct.
,
28
(
3
), p.
035023
.10.1088/1361-665X/aafd3a
114.
Agoras
,
M.
,
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
,
2009
, “
A General Hyperelastic Model for Incompressible Fiber-Reinforced Elastomers
,”
J. Mech. Phys. Solids.
,
57
(
2
), pp.
268
286
.10.1016/j.jmps.2008.10.014
115.
Lopez-Pamies
,
O.
, and
Idiart
,
M. I.
,
2010
, “
Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory
,”
J. Eng. Math.
,
68
(
1
), pp.
57
83
.10.1007/s10665-009-9359-y
116.
Jimenez
,
F. L.
,
2016
, “
On the Isotropy of Randomly Generated Representative Volume Elements for Fiber-Reinforced Elastomers
,”
Compos. Part B-Eng.
,
87
, pp.
33
39
.10.1016/j.compositesb.2015.10.014
117.
Michailidis
,
P. A.
,
Triantafyllidis
,
N.
,
Shaw
,
J. A.
, and
Grummon
,
D. S.
,
2009
, “
Superelasticity and Stability of a Shape Memory Alloy Hexagonal Honeycomb Under in-Plane Compression
,”
Int. J. Solids. Struct.
,
46
(
13
), pp.
2724
2738
.10.1016/j.ijsolstr.2009.03.013
118.
Michel
,
J. C.
,
Lopez-Pamies
,
O.
,
Ponte Castañeda
,
P.
, and
Triantafyllidis
,
N.
,
2010
, “
Microscopic and Macroscopic Instabilities in Finitely Strained Fiber-Reinforced Elastomers
,”
J. Mech. Phys. Solids
,
58
(
11
), pp.
1776
1803
.10.1016/j.jmps.2010.08.006
119.
Heinrich
,
C.
,
Aldridge
,
M.
,
Wineman
,
A. S.
,
Kieffer
,
J.
,
Waas
,
A. M.
, and
Shahwan
,
K.
,
2012
, “
The Influence of the Representative Volume Element (RVE) Size on the Homogenized Response of Cured Fiber Composites
,”
Model. Simul. Mater. Sci. Eng.
,
20
(
7
), p.
075007
.10.1088/0965-0393/20/7/075007
120.
Lan
,
X.
,
Liu
,
L. W.
,
Liu
,
Y. J.
,
Leng
,
J. S.
, and
Du
,
S. Y.
,
2014
, “
Post Microbuckling Mechanics of Fibre-Reinforced Shape-Memory Polymers Undergoing Flexure Deformation
,”
Mech. Mater.
,
72
, pp.
46
60
.10.1016/j.mechmat.2013.05.012
121.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1962
,
Theory of Elastic Stability
, 2nd ed.,
Dover Publications
,
New York
.
122.
Rosen
,
B. W.
,
1965
,
Fiber Composite Materials
, American Metal Institute of Ohio
,
OH
, pp.
123
187
.
123.
Gall
,
K.
,
Mikulas
,
M.
,
Munshi
,
N. A.
,
Beavers
,
F.
, and
Tupper
,
M.
,
2000
, “
Carbon Fiber Reinforced Shape Memory Polymer Composites
,”
J. Intel. Mat. Syst. Str.
,
11
(
11
), pp.
877
886
.10.1106/EJGR-EWNM-6CLX-3X2M
124.
Ware, T., Ellson, G., Kwasnik, A., Drewicz, S., Gall, K., and Voit, W., 2011, “Tough Shape Memory Polymer—Fiber Composites,”
J. Reinf. Plast. Comp.
, 30(5), pp. 371–380.10.1177/0731684410395418
125.
Schultz
,
M. R.
,
Francis
,
W. H.
,
Campbell
,
D.
, and
Lake
,
M. S.
,
2007
, “
Analysis Techniques for Shape-Memory Composite Structures
,”
AIAA
Paper No.
2007
2401
.10.2514/6.2007-2401
126.
Campbell
,
D.
, and
Lake
,
M. S.
,
2005
, “
Elastic Memory Composite Material: An Enabling Technology for Future Furlable Space Structures
,”
AIAA
Paper No.
2005
2362
.10.2514/6.2005-2362
127.
Francis
,
W.
,
Lake
,
M.
,
Schultz
,
M.
,
Campbell
,
D.
,
Dunn
,
M.
, and
Qi
,
H. J.
,
2007
, “
Elastic Memory Composite Microbuckling Mechanics: Closed-Form Model With Empirical Correlation
,”
AIAA
Paper No.
2007
2164
.10.2514/6.2007-2164
128.
Campbell
,
D.
, and
Maji
,
A. K.
,
2006
, “
Failure Mechanisms and Deployment Accuracy of Elastic Memory Composites
,”
J. Aerosp. Eng.
,
19
(
3
), pp.
184
193
.10.1061/(ASCE)0893-1321(2006)19:3(184)
129.
Campbell
,
D.
,
2003
, “
Deployment Precision and Mechanics of Elastic Memory Composites
,”
AIAA
Paper No.
2003
1495
.10.2514/6.2003-1495
130.
Chen
,
X.
, and
Hutchinson
,
J. W.
,
2004
, “
Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
597
603
.10.1115/1.1756141
131.
Huang
,
Z. Y.
,
Hong
,
W.
, and
Suo
,
Z.
,
2005
, “
Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate
,”
J. Mech. Phys. Solids
,
53
(
9
), pp.
2101
2118
.10.1016/j.jmps.2005.03.007
132.
Xiao
,
J.
,
Ryu
,
S. Y.
,
Huang
,
Y.
,
Hwang
,
K. C.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2010
, “
Mechanics of Nanowire/Nanotube in-Surface Buckling on Elastomeric Substrates
,”
Nanotechnology
,
21
(
8
), p.
085708
.10.1088/0957-4484/21/8/085708
133.
Ryu
,
S. Y.
,
Xiao
,
J. L.
,
Park
,
W. I.
,
Son
,
K. S.
,
Huang
,
Y. G.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2009
, “
Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates
,”
Nano Lett.
,
9
(
9
), pp.
3214
3219
.10.1021/nl901450q
134.
Campbell
,
D.
,
Lake
,
M.
, and
Mallick
,
K.
,
2004
, “
A Study of the Bending Mechanics of Elastic Memory Composites
,”
AIAA
Paper No.
2004
1636
.10.2514/6.2004-1636
135.
Jeon
,
H. G.
,
Mather
,
P. T.
, and
Haddad
,
T. S.
,
2000
, “
Shape Memory and Nanostructure in Poly (Norbornyl‐POSS) Copolymers
,”
Polym. Int.
,
49
(
5
), pp.
453
457
.10.1002/(SICI)1097-0126(200005)49:5<453::AID-PI332>3.0.CO;2-H
136.
Lake
,
M.
,
Hazelton
,
C.
,
Murphey
,
T.
, and
Murphy
,
D.
,
2002
, “
Development of Coilable Longerons Using Elastic Memory Composite Material
,”
AIAA
Paper No.
2002
1453
.10.2514/6.2002-1453
137.
Wang
,
Z. D.
,
Li
,
Z. F.
,
Xiong
,
Z. Y.
, and
Wang
,
L. Y.
,
2010
, “
Theoretical Studies on Microbuckling Mode of Elastic Memory Composites
,”
Acta Mech. Solida Sin.
,
23
(
1
), pp.
20
28
.10.1016/S0894-9166(10)60003-1
138.
Wang
,
Z. D.
,
Xiong
,
Z. Y.
,
Li
,
Z. F.
, and
Chang
,
R. N.
,
2008
, “
Micromechanism of Deformation in EMC Laminates
,”
Mat. Sci. Eng. A-Struct.
,
496
(
1–2
), pp.
323
328
.10.1016/j.msea.2008.05.029
139.
Tan
,
Q.
,
Liu
,
L. W.
,
Liu
,
Y. J.
, and
Leng
,
J. S.
,
2013
, “
Post Buckling Analysis of the Shape Memory Polymer Composite Laminate Bonded With Alloy Film
,”
Compos. Part B-Eng.
,
53
, pp.
218
225
.10.1016/j.compositesb.2013.04.052
140.
Zhang
,
J.
,
Dui
,
G.
, and
Liang
,
X.
,
2018
, “
Revisiting the Micro-Buckling of Carbon Fibers in Elastic Memory Composite Plates Under Pure Bending
,”
Int. J. Mech. Sci.
,
136
, pp.
339
348
.10.1016/j.ijmecsci.2017.12.018
You do not currently have access to this content.