Performance of Two Transonic Axial Compressor Rotors Incorporating Inlet Counterswirl

[+] Author and Article Information
C. H. Law, A. J. Wennerstrom

Aero Propulsion Laboratory, AFWAL/POTX, Wright-Patterson AFB, OH 45433

J. Turbomach 109(1), 142-148 (Jan 01, 1987) (7 pages) doi:10.1115/1.3262059 History: Received December 17, 1985; Online November 09, 2009


A single-stage axial-flow compressor which incorporates rotor inlet counterswirl to improve stage performance is discussed. Results for two rotor configurations are presented, including design and experimental test data. In this compressor design, inlet guide vanes were used to add counterswirl to the inlet of the rotor. The magnitude of the counterswirl was radially distributed to maximize the overall stage efficiency by minimizing the rotor combined losses (diffusion losses and shock losses). The shock losses were minimized by simultaneously optimizing the rotor blade section geometry, through-blade static pressure distribution, and leading edge aerodynamic/geometric shock sweep angles. Results from both the design and experimental performance analyses are presented and comparisons are made between the experimental data and the analyses and between the performance of both rotor designs. The computation of the flow field for both rotor designs and for the analysis of both tests was performed in an identical fashion using an axisymmetric, streamline-curvature-type code. Results presented include tip section blade-to-blade static pressure distributions and rotor through-blade and exit distributions of various aerodynamic parameters. The performance of this compressor stage represents a significant improvement in axial compressor performance compared to previous attempts to use rotor inlet counterswirl and to current, more conventional, state-of-the-art axial compressors operating under similar conditions.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In