The Aerodynamics of an Oscillating Cascade in a Compressible Flow Field

[+] Author and Article Information
D. H. Buffum

National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH 44135

S. Fleeter

Thermal Sciences and Propulsion Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Turbomach 112(4), 759-767 (Oct 01, 1990) (9 pages) doi:10.1115/1.2927719 History: Received February 21, 1989; Online June 09, 2008


Fundamental experiments are performed in the NASA Lewis Research Center Transonic Oscillating Cascade Facility to investigate and quantify the aerodynamics of a cascade of bioconvex airfoils executing torsion mode oscillations at realistic reduced frequency values. Both steady and unsteady airfoil surface pressures are measured at two inlet Mach numbers, 0.65 and 0.80. and two incidence angles, 0 and 7 deg, with the harmonic torsional airfoil cascade oscillations at realistic high reduced frequency and unsteady data obtained at several interbladephase angle values. The time-variant pressures are analyzed by means of discrete Fourier transform techniques, with these unique data compared with predictions from a linearized unsteady cascade model. The experimental results indicate that the interblade phase angle has a major effect on the chordwise distributions of the airfoil surface unsteady pressure, with the effects of reduced frequency, incidence angle, and Mach number somewhat less significant.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In