Temporally and Spatially Resolved Flow in a Two-Stage Axial Compressor: Part 1—Experiment

[+] Author and Article Information
R. C. Stauter, R. P. Dring, F. O. Carta

United Technologies Research Center, East Hartford, CT 06108

J. Turbomach 113(2), 219-225 (Apr 01, 1991) (7 pages) doi:10.1115/1.2929087 History: Received January 15, 1990; Online June 09, 2008


The fluid dynamics of turbomachines are extremely complex, due in part to the aerodynamic interactions between rotors and stators. It is necessary to acquire fluid dynamic data that reflect the interactive nature of a turbomachine to correlate with the fluid dynamics predicted from modern analyses. The temporal and spatial variations in the midspan aerodynamics of the second stage of a two-stage compressor have been studied with a two-component LDV system. Spatial variations were examined by traversing the LDV probe volume through a dense matrix of both axial and circumferential positions, while temporal resolution was achieved by acquiring all data as a function of the instantaneous rotor position. Hence, the data set reveals rotor and stator wake structure and decay in both the stationary and rotating frames of reference. The data also compared very favorably with extensive pneumatic measurements previously acquired in this compressor. In Part 2 of the paper, the data are used in the assessment of a prediction of the flow in the compressor using a time-accurate, thin-layer, two-dimensional Navier–Stokes analysis.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In