Heat Transfer Characteristics of Turbulent Flow in a Square Channel With Angled Discrete Ribs

[+] Author and Article Information
S. C. Lau, R. D. McMillin, J. C. Han

Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

J. Turbomach 113(3), 367-374 (Jul 01, 1991) (8 pages) doi:10.1115/1.2927885 History: Received January 15, 1990; Online June 09, 2008


Experiments have been conducted to study the turbulent heat transfer and friction for fully developed flow of air in a square channel in which two opposite walls are roughened with 90 deg full ribs, parallel and crossed full ribs with angles of attack (α) of 60 and 45 deg, 90 deg discrete ribs, and parallel and crossed discrete ribs with α = 60, 45, and 30 deg. The discrete ribs are staggered in alternate rows of three and two ribs. Results are obtained for a rib height-to-channel hydraulic diameter ratio of 0.0625, a rib pitch-to-height ratio of 10, and Reynolds numbers between 10,000 and 80,000. Parallel angled discrete ribs are superior to 90 deg discrete ribs and parallel angled full ribs, and are recommended for internal cooling passages in gas turbine airfoils. For α = 60 and 45 deg, parallel discrete ribs have higher ribbed wall heat transfer, lower smooth wall heat transfer, and lower channel pressure drop than parallel full ribs. Parallel 60 deg discrete ribs have the highest ribbed wall heat transfer and parallel 30 deg discrete ribs cause the lowest pressure drop. The heat transfer and pressure drops in crossed angled full and discrete rib cases are all lower than those in the corresponding 90 deg and parallel angled rib cases. Crossed arrays of angled ribs have poor thermal performance and are not recommended.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In