Turbulence Measurements in a Centrifugal Pump With a Synchronously Orbiting Impeller

[+] Author and Article Information
R. D. Flack

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22901

S. M. Miner

U.S. Naval Academy, Annapolis, MD 21402

R. J. Beaudoin

General Electric Company, Schenectady, NY 12345

J. Turbomach 114(2), 350-358 (Apr 01, 1992) (9 pages) doi:10.1115/1.2929149 History: Received February 12, 1991; Online June 09, 2008


Turbulence profiles were measured in a centrifugal pump with an impeller with backswept blades using a two-directional laser velocimeter. Data presented include radial, tangential, and cross product Reynolds stresses. Blade-to-blade profiles were measured at four circumferential positions and four radii within and one radius outside the four-bladed impeller. The pump was tested in two configurations: with the impeller running centered within the volute, and with the impeller orbiting with a synchronous motion (ε/r2 = 0.016). Flow rates ranged from 40 to 106 percent of the design flow rate. Variation in profiles among the individual passages in the oribiting impeller were found. For several regions the turbulence was isotropic so that the cross product Reynolds stress was low. At low flow rates the highest cross product Reynolds stress was near the exit. At near-design conditions the lowest cross product stress was near the exit, where uniform flow was also observed. Also, near the exit of the impeller the highest turbulence levels were seen near the tongue. For the design flow rate, inlet turbulence intensities were typically 9 percent and exit turbulence intensities were 6 percent. For 40 percent flow capacity the values increased to 18 and 19 percent, respectively. Large local turbulence intensities correlated with separated regions. The synchronous orbit did not increase the random turbulence, but did affect the turbulence in the individual channels in a systematic pattern.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In