An Axial Turbobrake

[+] Author and Article Information
M. I. Goodisman, M. L. G. Oldfield, T. V. Jones, R. W. Ainsworth

Department of Engineering Science, Oxford University, Oxford, United Kingdom

R. C. Kingcombe, A. J. Brooks

Royal Aerospace Establishment, Pyestock, Farnborough, United Kingdom

J. Turbomach 114(2), 419-425 (Apr 01, 1992) (7 pages) doi:10.1115/1.2929160 History: Received January 18, 1991; Online June 09, 2008


The “Axial Turbobrake” (patent applied for) is a novel turbomachine that can be used to absorb power generated by test turbines. Unlike a compressor, there is no pressure recovery through the turbobrake. This simplifies the aerodynamic design and enables high-stage loadings to be achieved. The blades used have high-turning two-dimensional profiles. This paper describes a single-stage axial turbobrake, which is driven by the exhaust gas of the test turbine and is isolated from the turbine by a choked throat. In this configuration no fast-acting controls are necessary as the turbobrake operates automatically with the turbine flow. Tests on a 0.17 scale model show that the performance is close to that predicted by a simple two-dimensional theory, and demonstrate that the turbobrake power absorption can be controlled and hence matched to that typically produced by the first stage of a modern highly loaded transonic turbine. A full-size axial turbobrake will be used in a short-duration rotating turbine experiment in an Isentropic Light Piston Tunnel at RAE Pyestock.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In