A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies

[+] Author and Article Information
C. Camci, K. Kim

The Pennsylvania State University, Aerospace Engineering Department, University Park, PA 16802

S. A. Hippensteele

NASA Lewis Research Center, Internal Fluid Mechanics Division, Cleveland, OH 44135

J. Turbomach 114(4), 765-775 (Oct 01, 1992) (11 pages) doi:10.1115/1.2928030 History: Received February 20, 1991; Online June 09, 2008


This study focuses on a new image processing based color capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies. The present method is highly applicable to the surfaces exposed to convective heating in gas turbine engines. The study shows that, in single-crystal mode, many of the colors appearing on the heat transfer surface correlate strongly with the local temperature. A very accurate quantitative approach using an experimentally determined linear hue versus temperature relation is possible. The new hue-capturing process is discussed in detail, in terms of the strength of the light source illuminating the heat transfer surface, effect of the orientation of the illuminating source with respect to the surface, crystal layer uniformity, and the repeatability of the process. The method uses a 24-bit color image processing system operating in hue-saturation-intensity domain, which is an alternative to conventional systems using red-green-blue color definition. The present method is more advantageous than the multiple filter method because of its ability to generate many isotherms simultaneously from a single-crystal image at a high resolution, in a very time-efficient manner. The current approach is valuable in terms of its direct application to both steady-state and transient heat transfer techniques currently used for the hot section heat transfer research in air-breathing propulsion systems.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In