On the Propagation of Viscous Wakes and Potential Flow in Axial-Turbine Cascades

[+] Author and Article Information
T. Korakianitis

Washington University, St. Louis, MO 63130

J. Turbomach 115(1), 118-127 (Jan 01, 1993) (10 pages) doi:10.1115/1.2929196 History: Received March 04, 1991; Online June 09, 2008


This paper investigates the propagation of pressure disturbances due to potential-flow interaction and viscous-wake interaction from upstream blade rows in axial-turbine-blade rotor cascades. Results are obtained by modeling the effects of the upstream stator viscous wake and potential-flow fields as incoming disturbances on the downstream rotor flow field, where the computations are performed. A computer program is used to calculate the unsteady rotor flow fields. The amplitudes for the rotor inlet distortions due to the two types of interaction are based on a review of available experimental and computational data. We study the propagation of the isolated potential-flow interaction (no viscous-wake interaction), of the isolated viscous wake interaction (no potential-flow interaction), and of the combination of interactions. The discussion uses as example a lightly loaded cascade for a stator-to-rotor-pitch ratio R = 2. We examine the relative magnitudes of the unsteady forces for two different stator-exit angles. We also explain the expected differences when the stator-to-rotor pitch ratio is decreased (to R = 1) and increased (to R = 4). We offer new and previously unpublished explanations of the mechanisms of generation of unsteady forces on the rotor blades. The potential flow field of the rotor cuts into the potential flow field of the stator. After the potential-flow disturbance from the stator is cut into a rotor cascade, it propagates into the relative flow field of the rotor passage as a potential-flow disturbance superimposed on the rotor-relative flow. The potential flow field of the rotor near the leading edge and the leading edge itself cut into the wake and generate two counterrotating vortical patterns flanking the wake centerline in the passage. The vortical pattern upstream of the wake centerline generates an increase in the local pressure (and in the forces acting on the sides of the passage). The vortical pattern downstream of the wake centerline generates a decrease in the local pressure (and in the forces acting on the sides of the passage). The resulting unsteady forces on the blades are generated by the combined (additive) interaction of the two disturbances.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In