Calculation of Transitional Boundary Layers With an Improved Low-Reynolds-Number Version of the k–ε Turbulence Model

[+] Author and Article Information
D. Biswas, Y. Fukuyama

Research and Development Center, Toshiba Corporation, Kawasaki, Japan

J. Turbomach 116(4), 765-773 (Oct 01, 1994) (9 pages) doi:10.1115/1.2929471 History: Received February 18, 1993; Online June 09, 2008


Several well-known low-Reynolds-number versions of the k–ε models are analyzed critically for laminar to turbulent transitional flows as well as near-wall turbulent flows from a theoretical and numerical standpoint. After examining apparent problems associated with the modeling of low-Reynolds-number wall damping functions used in these models, an improved version of the k–ε model is proposed by defining the wall damping factors as a function of some quantity (turbulence Reynolds number Ret ) that is only a rather general indicator of the degree of turbulent activity at any location in the flow rather than a specific function of the location itself, and by considering the wall limiting behavior, the free-stream asymptotic behavior, and the balance between production and destruction of turbulence. This new model is applied to the prediction of (1) transitional boundary layers influenced by the free-stream turbulence, pressure gradient, and heat transfer; (2) external heat transfer distribution on the gas turbine rotor and stator blade under different inlet Reynolds number and free-stream turbulence conditions. It is demonstrated that the present model yields improved predictions.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In