An Asymptotic Analysis of Mixing Loss

[+] Author and Article Information
G. Fritsch

MTU Motoren-und Turbinen-Union München GmbH, München, Federal Republic of Germany

M. B. Giles

Oxford University Computing Laboratory, Oxford, United Kingdom

J. Turbomach 117(3), 367-374 (Jul 01, 1995) (8 pages) doi:10.1115/1.2835670 History: Received March 17, 1993; Online January 29, 2008


The objective of this paper is to establish, in a rigorous mathematical manner, a link between the dissipation of unsteadiness in a two-dimensional compressible flow and the resulting mixing loss. A novel asymptotic approach and a control-volume argument are central to the analysis. It represents the first work clearly identifying the separate contributions to the mixing loss from simultaneous linear disturbances, i.e., from unsteady entropy, vorticity, and pressure waves. The results of the analysis have important implications for numerical simulations of turbomachinery flows; the mixing loss at the stator/rotor interface in steady simulations and numerical smoothing are discussed in depth. For a transonic turbine, the entropy rise through the stage is compared for a steady and an unsteady viscous simulation. The larger interface mixing loss in the steady simulation is pointed out and its physical significance is discussed. The asymptotic approach is then applied to the first detailed analysis of interface mixing loss. Contributions from different wave types and wavelengths are quantified and discussed.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In