Heat Transfer Measurements in an Annular Cascade of Transonic Gas Turbine Blades Using the Transient Liquid Crystal Technique

[+] Author and Article Information
R. F. Martinez-Botas, G. D. Lock, T. V. Jones

Department of Engineering Science, Oxford University, Oxford, United Kingdom

J. Turbomach 117(3), 425-431 (Jul 01, 1995) (7 pages) doi:10.1115/1.2835678 History: Received February 19, 1994; Online January 29, 2008


Heat transfer measurements have been made in the Oxford University Cold Heat Transfer Tunnel employing the transient liquid crystal technique. Complete contours of the heat transfer coefficient have been obtained on the aerofoil surfaces of a large annular cascade of high-pressure nozzle guide vanes (mean blade diameter of 1.11 m and axial chord of 0.0664 m). The measurements are made at engine representative Mach and Reynolds numbers (exit Mach number 0.96 and Reynolds number 2.0 × 106 ). A novel mechanism is used to isolate five preheated blades in the annulus before an unheated flow of air passes over the vanes, creating a step change in heat transfer. The surfaces of interest are coated with narrow-band thermochromic liquid crystals and the color crystal change is recorded during the run with a miniature CCD video camera. The heat transfer coefficient is obtained by solving the one-dimensional heat transfer equation for all the points of interest. This paper will describe the experimental technique and present results of heat transfer and flow visualization.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In