The Aerodynamic Mixing Effect of Discrete Cooling Jets With Mainstream Flow on a Highly Loaded Turbine Blade

[+] Author and Article Information
G. Wilfert

Dept. of Thermo-and Aerodynamics, ABB Corporate Research Center, Baden, Switzerland

L. Fottner

Institut für Strahlantriebe, Universität der Bundeswehr München, Neubiberg, Federal Republic of Germany

J. Turbomach 118(3), 468-478 (Jul 01, 1996) (11 pages) doi:10.1115/1.2836692 History: Received February 26, 1994; Online January 29, 2008


For the application of film cooling to turbine blades, experimental investigations were performed on the mixing processes in the near-hole region with a row of holes on the suction suction side of a turbine cascade. Data were obtained using pneumatic probes, pressure tappings, and a three-dimensional subminiature hot-wire probe, as well as surface flow visualization techniques. It was found that at low blowing rates, a cooling jet behaves very much like a normal obstacle and the mixing mainly takes place in the boundary layer. With increasing blowing rates, the jet penetrates deeper into the mainstream. The variation of the turbulence level at the inlet of the turbine cascade and the Reynolds number showed a strong influence on the mixing behavior. The kidney-shaped vortex and as an important achievement the individual horseshoe vortex of each single jet were detected and their exact positions were obtained. This way it was found that the position of the horseshoe vortex is strongly dependent on the blowing rate and this influences the aerodynamic mixing mechanisms. A two-dimensional code for the calculation of boundary layer flows called GRAFTUS was used; however, the comparison with the measurements showed only limited agreement for cascade flow with blowing due to the strong three-dimensional flow pattern.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In