Performance Improvement Through Indexing of Turbine Airfoils: Part 2—Numerical Simulation

[+] Author and Article Information
L. W. Griffin

Fluid Dynamics Analysis, National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Marshall Space Flight Center, AL 35812

F. W. Huber, O. P. Sharma

Pratt & Whitney, Technical, West Palm Beach, FL 33410; and East Hartford, CT 06108

J. Turbomach 118(4), 636-642 (Oct 01, 1996) (7 pages) doi:10.1115/1.2840919 History: Received February 11, 1995; Online January 29, 2008


An experimental/analytical study has been conducted to determine the performance improvements achievable by circumferentially indexing succeeding rows of turbine stator airfoils. A series of tests was conducted to experimentally investigate stator wake clocking effects on the performance of the space shuttle main engine (SSME) alternate turbopump development (ATD) fuel turbine test article (TTA). The results from this study indicate that significant increases in stage efficiency can be attained through application of this airfoil clocking concept. Details of the experiment and its results are documented in part 1 of this paper. In order to gain insight into the mechanisms of the performance improvement, extensive computational fluid dynamics (CFD) simulations were executed. The subject of the present paper is the initial results from the CFD investigation of the configurations and conditions detailed in part 1 of the paper. To characterize the aerodynamic environments in the experimental test series, two-dimensional, time-accurate, multistage, viscous analyses were performed at the TTA midspan. Computational analyses for five different circumferential positions of the first stage stator have been completed. Details of the computational procedure and the results are presented. The analytical results verify the experimentally demonstrated performance improvement and are compared with data whenever possible. Predictions of time-averaged turbine efficiencies as well as gas conditions throughout the flow field are presented. An initial understanding of the turbine performance improvement mechanism based on the results from this investigation is described.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In