Integrated Control of Rotating Stall and Surge in High-Speed Multistage Compression Systems

[+] Author and Article Information
K. M. Eveker, C. N. Nett, O. P. Sharma

United Technologies Pratt & Whitney, East Hartford, CT 02123

D. L. Gysling

United Technologies Research Center, East Hartford, CT 02123

J. Turbomach 120(3), 440-445 (Jul 01, 1998) (6 pages) doi:10.1115/1.2841735 History: Received February 01, 1997; Online January 29, 2008


Aeroengines operate in regimes for which both rotating stall and surge impose low-flow operability limits. Thus, active control strategies designed to enhance operability of aeroengines must address both rotating stall and surge as well as their interaction. In this paper, a previously developed nonlinear control strategy that achieves simultaneous active control of rotating stall and surge is applied to a high-speed three-stage axial flow compression system with operating parameters representative of modern aeroengines. The controller is experimentally validated for two compressor builds and its robustness to radial distortion assessed. For actuation, the control strategy utilizes an annulus-averaged bleed valve with bandwidth on the order of the rotor frequency. For sensing, measurements of the circumferential asymmetry and annulus-averaged unsteadiness of the flow through the compressor are used. Experimental validation of simultaneous control of rotating stall and surge in a high-speed environment with minimal sensing and actuation requirements is viewed as another important step toward applying active control to enhance operability of compression systems in modern aeroengines.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In