Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits

[+] Author and Article Information
M. Gritsch, A. Schulz, S. Wittig

Lehrstuhl und Institut für Thermische Strömungsmaschinen, Universität Karlsruhe (T.H.), Kaiserstr. 12, 76128 Karlsruhe, Germany

J. Turbomach 120(3), 549-556 (Jul 01, 1998) (8 pages) doi:10.1115/1.2841752 History: Received February 01, 1997; Online January 29, 2008


This paper presents detailed measurements of the film-cooling effectiveness for three single, scaled-up film-cooling hole geometries. The hole geometries investigated include a cylindrical hole and two holes with a diffuser-shaped exit portion (i.e., a fan-shaped and a laid-back fan-shaped hole). The flow conditions considered are the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the blowing ratio (up to 2). The coolant-to-mainflow temperature ratio is kept constant at 0.54. The measurements are performed by means of an infrared camera system, which provides a two-dimensional distribution of the film-cooling effectiveness in the near field of the cooling hole down to x/D = 10. As compared to the cylindrical hole, both expanded holes show significantly improved thermal protection of the surface downstream of the ejection location, particularly at high blowing ratios. The laidback fan-shaped hole provides a better lateral spreading of the ejected coolant than the fan-shaped hole, which leads to higher laterally averaged film-cooling effectiveness. Coolant passage cross-flow Mach number and orientation strongly affect the flowfield of the jet being ejected from the hole and, therefore, have an important impact on film-cooling performance.

Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In