A Numerical Investigation of Transonic Axial Compressor Rotor Flow Using a Low-Reynolds-Number k–ε Turbulence Model

[+] Author and Article Information
T. Arima, T. Sonoda, M. Shirotori

HONDA R&D Co., Ltd., Wako Research Center, Saitama, Japan

A. Tamura, K. Kikuchi

National Aerospace Laboratory, Tokyo, Japan

J. Turbomach 121(1), 44-58 (Jan 01, 1999) (15 pages) doi:10.1115/1.2841233 History: Received February 01, 1997; Online January 29, 2008


We have developed a computer simulation code for three-dimensional viscous flow in turbomachinery based on the time-averaged compressible Navier–Stokes equations and a low-Reynolds-number k–ε turbulence model. It is described in detail in this paper. The code is used to compute the flow fields for two types of rotor (a transonic fan NASA Rotor 67 and a transonic axial compressor NASA rotor 37), and numerical results are compared to experimental data based on aerodynamic probe and laser anemometer measurements. In the case of Rotor 67, calculated and experimental results are compared under the design speed to validate the code. The calculated results show good agreement with the experimental data, such as the rotor performance map and the spanwise distribution of total pressure, total temperature, and flow angle downstream of the rotor. In the case of Rotor 37, detailed comparisons between the numerical results and the experimental data are made under the design speed condition to assess the overall quality of the numerical solution. Furthermore, comparisons under the part-speed condition are used to investigate a flow field without passage shock. The results are well predicted qualitatively. However, considerable quantitative discrepancies remain in predicting the flow near the tip. In order to assess the predictive capabilities of the developed code, computed flow structures are presented with the experimental data for each rotor and the cause of the discrepancies is discussed.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In