A Nonlinear Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows

[+] Author and Article Information
H. A. Chuang, J. M. Verdon

Aeromechanical, Chemical, and Fluid Systems, United Technologies Research Center, East Hartford, CT 06108

J. Turbomach 121(2), 348-357 (Apr 01, 1999) (10 pages) doi:10.1115/1.2841321 History: Received February 01, 1998; Online January 29, 2008


The three-dimensional, multistage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic response of a blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated, so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational inlet and exit boundaries transparent to outgoing unsteady disturbances and to allow for the prescription of incoming aerodynamic excitations. The modified TURBO analysis has been applied to predict unsteady subsonic and transonic flows. The intent is to validate this nonlinear analysis partially for blade flutter applications via numerical results for benchmark unsteady flows, and to demonstrate this analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a three-dimensional version of the 10th Standard Cascade and unsteady transonic flows through the first-stage rotor of the NASA Lewis Rotor 67 fan. Some general correlations between aeromechanical stabilities and fan operating characteristics will be presented.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In