Viscous and Inviscid Linear/Nonlinear Calculations Versus Quasi-Three-Dimensional Experimental Cascade Data for a New Aeroelastic Turbine Standard Configuration

[+] Author and Article Information
T. H. Fransson, M. Jöcker

Chair of Heat and Power Technology, Royal Institute of Technology, Stockholm, Sweden

A. Bölcs, P. Ott

Laboratoire de Thermique Appliquée et de Turbomachines, Swiss Federal Institute of Technology, Lausanne, Switzerland

J. Turbomach 121(4), 717-725 (Oct 01, 1999) (9 pages) doi:10.1115/1.2836725 History: Received February 01, 1998; Online January 29, 2008


This paper presents a new International Standard Configuration to be added to an already existing set of 10 configurations for unsteady flow through vibrating axial-flow turbomachine cascades. This 11th configuration represents a turbine blade geometry with transonic design flow conditions with a normal shock positioned at 75 percent real chord on the suction side. Out of a set of test cases covering all relevant flow regimes two cases were selected for publication: A subsonic, attached flow case, and an off-design transonic case showing a separation bubble at 30 percent real chord on the suction side. The performed tests are shown to be repeatable and suitable for code validations of numerical models predicting flutter in viscous flows. The validity of the measured data of the two public cases was examined and comparisons with other tests were conducted. Sometimes a large difference in aerodynamic damping was observed on cases with similar flow conditions. This was investigated at three transonic cases with almost identical inlet flow conditions and only small variations in outlet Mach number. It was found that the differences in the global damping are due to very local changes on the blade surface in the shock region, which obtain a large influence by the integration because of the discrete measuring points. Hence it is recommended not to look at the global damping for code validations but more precisely to the local values. These show a common tendency, which is reproducible with different numerical methods. This was demonstrated with a potential model, a linear Euler model, a nonlinear Euler model, and a Navier–Stokes solver, all applied to predict flutter of each test case with a 2D/Q3D approach. This paper demonstrates both the limitations of inviscid codes to predict flutter in viscous flow regimes, and their cost advantage in attached flow calculations. The need for viscous code development and validation is pointed out. This should justify and encourage the publication of thoroughly measured test cases with viscous effects.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In