Discharge Coefficients of a Preswirl System in Secondary Air Systems

[+] Author and Article Information
M. Dittmann, T. Geis, V. Schramm, S. Kim, S. Wittig

Lehrstuhl und Institut für Thermische Strömungsmaschinen, University of Karlsruhe, 76128 Karlsruhe, Germany

J. Turbomach 124(1), 119-124 (Feb 01, 2001) (6 pages) doi:10.1115/1.1413474 History: Received February 01, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Scricca, J. A., and Moore, K. D., 1997, “Effects of ‘Cooled’ Cooling Air on Pre-Swirl Nozzle Design,” Tech. Rep. NASA/CP-98-208527, Pratt & Whitney, Oct.
Meierhofer, B., and Franklin, C. J., 1981, “An Investigation of a Preswirled Cooling Airflow to a Turbine Disc by Measuring the Air Temperature in the Rotating Channels,” ASME Paper No. 81-GT-132.
Samoilovich,  G. S., and Morozov,  B. I., 1957, “Coefficients of Flow Through Pressure Equalizing Holes in Turbine Discs,” Teploenergetica, 8, pp. 16–23.
Meyfarth,  P. F., and Shine,  A. J., 1965, “Experimental Study of Flow Through Moving Orifices,” ASME J. Basic Eng., 87, pp. 1082–1083.
McGreehan,  W. F., and Schotsch,  M. J., 1988, “Flow Characteristics of Long Orifices With Rotation and Corner Radiusing,” ASME J. Turbomach., 110, pp. 213–217.
Wittig, S., Kim, S., Scherer, T., Jakoby, R., and Weissert, I., 1995, “Durchfluß an rotierenden Wellen und Scheibenbohrungen und Wärmeübergang an rotierenden Wellen,” Forschungsvereinigung Verbrennungskraftmaschinen (FVV), Abschlußbericht, Vorhaben No. 465 and 536, Heft 574.
El-Oun,  Z. B., and Owen,  J. M., 1988, “Pre-Swirl Blade-Cooling Effectiveness in an Adiabatic Rotor–Stator System,” ASME J. Turbomach., 111, pp. 522–529.
Wilson,  M., Pilbrow,  R., and Owen,  J. M., 1997, “Flow and Heat Transfer in a Pre-Swirl Rotor–Stator System,” ASME J. Turbomach., 119, pp. 364–373.
Popp,  O., Zimmermann,  H., and Kutz,  J., 1998, “CFD Analysis of Coverplate Receiver Flow,” ASME J. Turbomach., 120, pp. 43–49.
Zimmermann, H., Kutz, J., and Fischer, R., 1998, “Air System Correlations: Part 2—Rotating Holes and Two Phase Flow,” ASME Paper No. 98-GT-207.
Bragg,  S. L., 1960, “Effect of Compressibility on the Discharge Coefficient of Orifices and Convergent Nozzles,” J. Mech. Eng. Sci., 2, No. 1, pp. 35–44.


Grahic Jump Location
Details of test section; dimensions in mm
Grahic Jump Location
Instrumentation of preswirl rig
Grahic Jump Location
Velocities in absolute and relative frames of reference
Grahic Jump Location
Discharge coefficients for preswirl nozzles cDN
Grahic Jump Location
cDR,abs without preswirl plate
Grahic Jump Location
Typical trends for cDN,cDR, and cD
Grahic Jump Location
Effect of NR,l/d, and NN
Grahic Jump Location
Effect of r/d for NN=11,NR=4, and s1=10 mm
Grahic Jump Location
Effect of s1 for NN=12,NR=24, and r/d=0.2
Grahic Jump Location
Effect of a superposed radial outflow



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In