Research Papers

The Design Space Boundaries for High Flow Capacity Centrifugal Compressors

[+] Author and Article Information
Daniel Rusch

Compressor Development (Dept. ZTE),
ABB Turbo Systems Ltd.,
Bruggerstrasse 71a,
CH-5401 Baden, Switzerland
e-mail: Daniel.Rusch@ch.abb.com

Michael Casey

Institute of Thermal Turbomachinery (ITSM),
University of Stuttgart, Germany and PCA Engineers Limited,
Lincoln, England

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received August 8, 2012; final manuscript received August 13, 2012; published online March 25, 2013. Editor: David Wisler.

J. Turbomach 135(3), 031035 (Mar 25, 2013) (11 pages) Paper No: TURBO-12-1170; doi: 10.1115/1.4007548 History: Received August 08, 2012; Revised August 13, 2012

A methodology has been derived allowing a fast preliminary assessment of the design of centrifugal compressors specified for high specific swallowing capacity. The method is based on one-dimensional (1D) design point values using classical turbomachinery analysis to determine the inlet geometry for the maximum mass flow function. The key results are then expressed in a series of diagrams which draw out the nature of the conflicting boundary conditions of the design. In particular, it is shown how the inlet casing relative Mach number causes the design flow coefficient to decrease with the total pressure ratio and determines the inlet eye diameter. Physically based boundaries of operation are added to the diagrams giving guidelines for the proper choice of specification values to the designer. In addition, links are given to some well-known impeller efficiency correlations, so that a preliminary estimate of the performance can be made. Comparisons are made with a range of compressor data which supports the approach. The derived methodology allows any given specifications to be checked rapidly for feasibility and development risk or can be used to define a challenging specification for the design of a new product.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Rodgers, C., 1991, “The Efficiencies of Single-Stage Centrifugal Compressors for Aircraft Applications,” ASME Paper No. 91-GT-77.
Rodgers, C., 1992, “Centrifugal Compressor Design: State of the Art Performance,” Cranfield University Short Course on Centrifugal Compressors, Cranfield University, Cranfield, UK.
Casey, M. V., and Robinson, C. J., 2006, “A Guide to Turbocharger Compressor Characteristics,” Dieselmotorentechnik, M.Bargende, ed., TAE Esslingen, Ostfildern, Germany.
Robinson, C. J., Casey, M. V., and Woods, I., 2011, “An Integrated Approach to the Aero-Mechanical Optimisation of Turbo Compressors,” Current Trends in Design and Computation of Turbomachinery, CKD Nové Energo & TechSoft Engineering, Prague, Czech Republic.
Dixon, S. L., 1997, Thermodynamics of Turbomachinery, 3rd ed., Butterworth-Heinemann, Oxford, England.
Hill, P., and Peterson, C., 1992, Mechanics and Thermodynamics of Propulsion, 2nd ed., Addison-Wesley, Reading, MA.
Aungier, R. H., 2000, Centrifugal Compressors—A Strategy for Aerodynamic Design and Analysis, ASME Press, New York.
Denton, J. D., 1993, “Loss Mechanisms in Turbomachines,” ASME J. Turbomach., 115, pp. 621–656. [CrossRef]
Bölcs, A., 1986, Transsonische Turbomaschinen, Braun, Karlsruhe, Germany.
Lohmberg, A., Casey, M., and Ammann, S., 2003, “Transonic Radial Compressor Inlet Design,” Proc. Inst. Mech. Eng., 217(4), pp. 367–374. [CrossRef]
Whitfield, A., and Baines, N. C., 1990, Design of Radial Turbomachines, Longman Scientific and Technical, Harlow, UK.
Stanitz, J. D., 1953, “Design Considerations for Mixed Flow Compressors With High Flow Rates per Unit Frontal Area,” NACA RM E53A15.
Rodgers, C., 2003, “High Specific Speed, High Inducer Tip Mach Number Centrifugal Compressor,” ASME Paper No. GT2003-38949. [CrossRef]
Eckert, B., and Schnell, E., 1961, Axial- und Radialkompressoren, Springer, Berlin.
Casey, M. V., and Marty, F., 1985, “Centrifugal Compressors—Performance at Design and Off-Design Conditions,” Proc. Inst. Refrig., 82, pp. 71–80.


Grahic Jump Location
Fig. 1

Dependence of stage adiabatic efficiency on the dimensionless specific speed (ωs = Ns), pressure ratio, and impeller inlet casing relative Mach number (Mw1 = M1s) given by Rodgers [2] for high pressure ratio stages

Grahic Jump Location
Fig. 2

Dependence of compressor polytropic efficiency on the flow coefficient and tip-speed Mach number (Mu2 = Mu) derived by Casey and Robinson [3]

Grahic Jump Location
Fig. 3

Dependency of isentropic efficiency on the polytropic efficiency and total pressure ratio according to Eq. (4)

Grahic Jump Location
Fig. 4

Velocity triangle at impeller inlet casing

Grahic Jump Location
Fig. 5

Modified mass flow function Φ' for a centrifugal compressor with zero inlet swirl and for two different values of the isentropic exponent based on Eq. (17)

Grahic Jump Location
Fig. 6

Dependence of Mu2 on φt1/k and different values of γ according to Eq. (19)

Grahic Jump Location
Fig. 7

Flow coefficient according to Eq. (21). The diameter ratio values are given for an example design at an inlet flow coefficient of φt1 = 0.09 in air.

Grahic Jump Location
Fig. 8

Stage total pressure ratio versus swallowing capacity expressed as inlet flow coefficient, assuming constant efficiency

Grahic Jump Location
Fig. 9

Stage total pressure ratio versus swallowing capacity expressed as specific speed, assuming constant efficiency

Grahic Jump Location
Fig. 10

Stage total pressure ratio versus swallowing capacity expressed as inlet flow coefficient, but using the efficiency correlation according to Fig. 2

Grahic Jump Location
Fig. 11

Tip-speed Mach number versus swallowing capacity expressed as inlet flow coefficient. The efficiency levels are given in terms of polytropic efficiency divided by the maximum value using the correlation according to Fig. 2.

Grahic Jump Location
Fig. 12

Physical limits of the centrifugal compressor design space. The shading is explained in the text and indicates the regions where designs become more difficult.

Grahic Jump Location
Fig. 13

1D design flow chart

Grahic Jump Location
Fig. 14

Stage tip-speed Mach number versus swallowing capacity for a range of compressor stages in comparison to Fig. 11



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In