Childs, P. R. N.
, 2011, Rotating Flow, Elsevier, Oxford, UK.

Owen, J. M.
, and
Rogers, R. H.
, 1995, Flow and Heat Transfer in Rotating Disc Systems, Volume 2—Rotating Cavities, Research Studies Press, Taunton, UK.

Shevchuk, I. V.
, 2009, Convective Heat and Mass Transfer in Rotating Disc Systems, Springer, Heidelberg.

Tritton, D. J.
, 1988, Physical Fluid Dynamics, OUP, New York.

King, M. P.
, 2003, “Convective Heat Transfer in a Rotating Annulus,” Ph.D. thesis, University of Bath, Bath, UK.

Grossmann, S.
, and
Lohse, D.
, 2000, “Scaling in Thermal Convection: A Unifying Theory,” J. Fluid Mech., 407, pp. 27–56.

[CrossRef]
Hollands, K. G. T.
,
Raithby, G. D.
, and
Konicek, L.
, 1975, “Correlation Equations for Free Convection Heat Transfer in Horizontal Layers of Air and Water,” Int. J. Heat Mass Transfer, 18(7–8), pp. 879–884.

[CrossRef]
Owen, J. M.
,
Pincombe, J. R.
, and
Rogers, R. H.
, 1985, “Source-Sink Flow Inside a Rotating Cylindrical Cavity,” J. Fluid Mech. 155, pp. 233–265.

[CrossRef]
Bohn, D.
,
Dibelius, G. H.
,
Deuker, E.
, and
Emunds, R.
, 1994, “Flow Pattern and Heat Transfer in a Closed Rotating Annulus,” ASME J. Turbomach., 116(3), pp. 542–547.

[CrossRef]
Bohn, D.
,
Deuker, E.
,
Emunds, R.
, and
Gorzelitz, V.
, 1995, “Experimental and Theoretical Investigations of Heat Transfer in Closed Gas Filled Rotating Annuli,” ASME J. Turbomach., 117(1), pp. 175–183.

[CrossRef]
Bohn, D.
,
Edmunds, R.
,
Gorzelitz, V.
, and
Kruger, U.
, 1996, “Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli II,” ASME J. Turbomach., 118(1), pp. 11–19.

[CrossRef]
Bohn, D.
, and
Gier, J.
, 1998, “The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli,” ASME J. Turbomach., 120(4), pp. 824–830.

[CrossRef]
King, M. P.
,
Wilson, M.
, and
Owen, J. M.
, 2007, “Rayleigh–Benard Convection in Open and Closed Rotating Cavities,” ASME J. Eng. Gas Turbines Power, 129(2), pp. 305–311.

[CrossRef]
Owen, J. M.
, 2010, “Thermodynamic Analysis of Buoyancy-Induced Flow in Rotating Cavities,” ASME J. Turbomach., 132(3), p. 031006.

[CrossRef]
Lewis, T. W.
, 1999, “Numerical Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity,” Ph.D. thesis, University of Bath, Bath, UK.

Niemela, J. J.
,
Skrbek, L.
,
Sreenivasan, K. R.
, and
Donnelly, R. J.
, 2000, “Turbulent Convection at Very High Rayleigh Numbers,” Nature, 404(6780), pp. 837–840.

[CrossRef] [PubMed]
Sun, X.
,
Kilfoil, A.
,
Chew, J. W.
, and
Hills, N. J.
, 2004, “Numerical Simulation of Natural Convection in Stationary and Rotating Cavities,” ASME Paper No. GT2004-53528.

Owen, J. M.
, and
Pincombe, J. R.
, 1979, “Vortex Breakdown in a Rotating Cylindrical Cavity,” J. Fluid Mech., 90(1), pp. 109–127.

[CrossRef]
Farthing, P. R.
,
Long, C. A.
,
Owen, J. M.
, and
Pincombe, J. R.
, 1992, “Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure,” ASME J. Turbomach., 114(1), pp. 237–246.

[CrossRef]
Bohn, D.
,
Deutsch, G.
,
Simon, B.
, and
Burkhardt, C.
, 2000, “Flow Visualisation in a Rotating Cavity With Axial Throughflow,” ASME Paper No. 2000-GT-0280.

Owen, J. M.
, and
Powell, J.
, 2006, “Buoyancy-Induced Flow in a Heated Rotating Cavity,” ASME J. Eng. Gas Turbines Power, 128(1), pp. 128–134.

[CrossRef]
Long, C. A.
,
Miche, N. D. D.
, and
Childs, P. R. N.
, 2007, “Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow,” Int. J. Heat Fluid Flow, 28(6), pp. 1391–1404.

[CrossRef]
Johnson, B. V.
,
Lin, J. D.
,
Daniels, W. A.
, and
Paolillo, R.
, 2006, “Flow Characteristics and Stability Analysis of Variable-Density Rotating Flows in Compressor-Disk Cavities,” ASME J. Eng. Gas Turbines Power, 128(1), pp. 118–127.

[CrossRef]
Dweik, Z.
,
Briley, R.
,
Swafford, T.
, and
Hunt, B.
, 2009, “Computational Study of the Heat Transfer of the Buoyancy-Driven Rotating Cavity With Axial Throughflow of Cooling Air,” ASME Paper No. GT2009-59978.

Farthing, P. R.
,
Long, C. A.
,
Owen, J. M.
, and
Pincombe, J. R.
, 1992, “Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer,” ASME J. Turbomach., 114(1), pp. 229–236.

[CrossRef]
Long, C. A.
, 1994, “Disk Heat Transfer in a Rotating Cavity With an Axial Throughflow of Cooling Air,” Int. J. Heat Fluid Flow, 15(4), pp. 307–316.

[CrossRef]
Sri Kantha, M.
, 1987, “A Correlation of Heat Transfer Measurements From the Mk II Rotating Cavity Rig With an Axial Throughflow of Coolant,” Thermo-Fluid Mechanics Research Centre, University of Sussex, Brighton, UK, Report No. 87/TFMRC/TN48.

Long, C. A.
, and
Childs, P. R. N.
, 2007, “Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow,” Int. J. Heat Fluid Flow, 28(6), pp. 1405–1417.

[CrossRef]
Atkins, N. R.
, and
Kanjirakkad, V.
, 2014, “Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions,” ASME Paper No. GT2014-27174.

Tang, H.
,
Shardlow, T.
, and
Owen, J. M.
, 2015, “Use of Fin Equation to Calculate Nusselt Numbers for Rotating Discs,” ASME Paper No. GT2015-42029.

Gunther, A.
,
Uffrecht, W.
, and
Odenbach, S.
, 2014, “The Effects of Rotation and Mass Flow on Local Heat Transfer in Rotating Cavities With Axial Throughflow,” ASME Paper No. GT2014-26228.

Iacovides, H.
, and
Chew, J. W.
, 1993, “The Computation of Convective Heat Transfer in Rotating Cavities,” Int. J. Heat Fluid Flow, 14(2), pp. 146–154.

[CrossRef]
Long, C. A.
, and
Tucker, P. G.
, 1994, “Numerical Computation of Laminar Flow in a Heated Rotating Cavity With an Axial Throughflow of Air,” Int. J. Numer. Methods Heat Fluid Flow, 4(4), pp. 347–365.

[CrossRef]
Tucker, P. G.
, 2002, “Temporal Behaviour of Flow in Rotating Cavities,” Numer. Heat Transfer A, 41(6–7), pp 611–627.

[CrossRef]
Tian, S.
,
Tao, Z.
,
Ding, S.
, and
Xu, G.
, 2004, “Investigation of Flow and Heat Transfer in a Rotating Cavity With Axial Throughflow of Cooling Air,” ASME Paper No. GT2004-53525.

Sun, X.
,
Linblad, K.
,
Chew, J. W.
, and
Young, C.
, 2007, “LES and RANS Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow,” ASME J. Eng. Gas Turbines Power, 129(2), pp. 318–325.

[CrossRef]
Long, C. A.
,
Alexiou, A.
, and
Smout, P. D.
, 2003, “Heat Transfer in H.P. Compressor Internal Air Systems: Measurements From the Peripheral Shroud of a Rotating Cavity with Axial Throughflow,” 2nd International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2003), Victoria Falls, Zambia, June 23–25, Paper No. LC1.

Owen, J. M.
,
Abrahamsson, H.
, and
Linblad, K.
, 2007, “Buoyancy-Induced Flow in Open Rotating Cavities,” ASME J. Eng. Gas Turbines Power, 129(4), pp. 893–900.

[CrossRef]
Tan, Q.
,
Ren, J.
, and
Jiang, H.
, 2009, “Prediction of Flow Features in Rotating Cavities With Axial Throughflow by RANS and LES,” ASME Paper No. GT2009-59428.

Tan, Q.
,
Ren, J.
, and
Jiang, H.
, 2014, “Prediction of 3D Unsteady Flow and Heat Transfer in Rotating Cavity by Discontinuous Galerkin Method and Transition Model,” ASME Paper No. GT2014-26584.

He, L.
, 2011, “Efficient Computational Model for Nonaxisymmetric Flow and Heat Transfer in Rotating Cavity,” ASME J. Turbomach., 133(2), p. 021018.

[CrossRef]
Bohn, D.
,
Ren, J.
, and
Tuemmers, C.
, 2006, “Investigation of the Unstable Flow Structure in a Rotating Cavity,” ASME Paper No. GT2006-90494.

Tucker, P.
,
Eastwood, S.
,
Klostermeier, C.
,
Jefferson-Loveday, R.
,
Tyacke, J.
, and
Liu, Y.
, 2011, “Hybrid LES Approach for Practical Turbomachinery Flows—Part I: Hierarchy and Example Simulations,” ASME J. Turbomach., 134(2), p. 021023.

[CrossRef]
Tucker, P.
,
Eastwood, S.
,
Klostermeier, C.
,
Xia, H.
,
Ray, P.
,
Tyacke, J.
, and
Dawes, W.
, 2011, “Hybrid LES Approach for Practical Turbomachinery Flows—Part II: Further Applications,” ASME J. Turbomach., 134(2), p. 021024.

[CrossRef]
Martyushev, L. M.
, and
Seleznev, V. D.
, 2006, “Maximum Entropy Production Principle in Physics, Chemistry and Biology,” Phys. Rep., 426(1), pp. 1–45.

[CrossRef]
Chew, J. W.
,
Farthing, P. R.
,
Owen, J. M.
, and
Stratford, B. S.
, 1989, “The Use of Fins to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow,” ASME J. Turbomach., 111(3), pp. 349–356.

[CrossRef]
Farthing, P. R.
,
Chew, J. W.
, and
Owen, J. M.
, 1991, “The Use of Deswirl Nozzles to Reduce the Pressure Drop in a Rotating Cavity,” ASME J. Turbomach., 113(1), pp. 106–114.

[CrossRef]
Firouzian, M.
,
Owen, J. M.
,
Pincombe, J. R.
, and
Rogers, R. H.
, 1985, “Flow and Heat Transfer in a Rotating Cylindrical Cavity With a Radial Inflow of Fluid. Part I: The Flow Structure,” Int. J. Heat Fluid Flow, 6(4), pp. 228–234.

[CrossRef]
Firouzian, M.
,
Owen, J. M.
,
Pincombe, J. R.
, and
Rogers, R. H.
, 1986, “Flow and Heat Transfer in a Rotating Cylindrical Cavity With a Radial Inflow of Fluid. Part II: Velocity, Pressure and Heat Transfer Measurements,” Int. J. Heat Fluid Flow, 7(1), pp. 21–27.

[CrossRef]
Gunther, A.
,
Uffrecht, W.
, and
Odenbach, S.
, 2012, “Local Measurements of Disk Heat Transfer in Heated Rotating Cavities for Several Flow Regimes,” ASME J. Turbomach., 134(5), p. 051016.

[CrossRef]
Kumar, V. B. G.
,
Chew, J. W.
, and
Hills, N. J.
, 2013, “Rotating Flow and Heat Transfer in Cylindrical Cavities With Radial Inflow,” ASME J. Eng. Gas Turbines Power, 135(3), p. 032502.

[CrossRef]
Farthing, P. R.
, 1989, “The Effect of Geometry on Flow and Heat Transfer in a Rotating Cavity,” Ph.D. thesis, University of Sussex, Brighton, UK.

Atkins, N. R.
, 2013, “Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control,” ASME Paper No. GT2013-95768.