Kirsch,
K. L.
, and
Thole,
K. A.
, 2016, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels,” ASME J. Turbomach.,
139(1), p. 011007.

[CrossRef]
Chang,
S. W.
,
Lees,
A. W.
, and
Chou,
T. C.
, 2009, “
Heat Transfer and Pressure Drop in Furrowed Channels With Transverse and Skewed Sinusoidal Wavy Walls,” Int. J. Heat Mass Transfer,
52(19–20), pp. 4592–4603.

[CrossRef]
Pham,
M. V.
,
Plourde,
F.
, and
Doan,
S. K.
, 2008, “
Turbulent Heat and Mass Transfer in Sinusoidal Wavy Channels,” Int. J. Heat Fluid Flow,
29(5), pp. 1240–1257.

[CrossRef]
Wang,
G.
, and
Vanka,
S. P.
, 1995, “
Convective Heat Transfer in Periodic Wavy Passages,” Int. J. Heat Mass Transfer,
38(17), pp. 3219–3230.

[CrossRef]
Ramgadia,
A. G.
, and
Saha,
A. K.
, 2013, “
Numerical Study of Fully Developed Flow and Heat Transfer in a Wavy Passage,” Int. J. Therm. Sci.,
67, pp. 152–166.

[CrossRef]
Yong,
J. Q.
, and
Teo,
C. J.
, 2014, “
Mixing and Heat Transfer Enhancement in Microchannels Containing Converging-Diverging Passages,” ASME J. Heat Transfer,
136(4), p. 041704.

[CrossRef]
Sui,
Y.
,
Teo,
C. J.
,
Lee,
P. S.
,
Chew,
Y. T.
, and
Shu,
C.
, 2010, “
Fluid Flow and Heat Transfer in Wavy Microchannels,” Int. J. Heat Mass Transfer,
53(13–14), pp. 2760–2772.

[CrossRef]
Guzmán,
A. M.
,
Cárdenas,
M. J.
,
Urzúa,
F. A.
, and
Araya,
P. E.
, 2009, “
Heat Transfer Enhancement by Flow Bifurcations in Asymmetric Wavy Wall Channels,” Int. J. Heat Mass Transfer,
52(15–16), pp. 3778–3789.

[CrossRef]
Singh,
P. K.
,
Tan,
S. H. F.
,
Teo,
C. J.
, and
Lee,
P. S.
, 2013, “Flow and Heat Transfer in Branched Wavy Microchannels,” ASME Paper No. MNHMT2013-22058.

http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1838020
Snyder,
J. C.
,
Stimpson,
C. K.
,
Thole,
K. A.
, and
Mongillo,
D.
, 2016, “
Build Direction Effects on Additively Manufactured Channels,” ASME J. Turbomach.,
138(5), p. 051006.

[CrossRef]
Stimpson,
C. K.
,
Snyder,
J. C.
,
Thole,
K. A.
, and
Mongillo,
D.
, 2016, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels,” ASME J. Turbomach.,
138(5), p. 051008.

[CrossRef]
Khaing,
M. W.
,
Fuh,
J. Y. H.
, and
Lu,
L.
, 2001, “
Direct Metal Laser Sintering for Rapid Tooling: Processing and Characterisation of EOS Parts,” J. Mater. Process. Technol.,
113(1–3), pp. 269–272.

[CrossRef]
Delgado,
J.
,
Ciurana,
J.
, and
Rodríguez,
C. A.
, 2012, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM with Iron-Based Materials,” Int. J. Adv. Manuf. Technol.,
60(5–8), pp. 601–610.

[CrossRef]
Strano,
G.
,
Hao,
L.
,
Everson,
R. M.
, and
Evans,
K. E.
, 2013, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting,” J. Mater. Process. Technol.,
213(4), pp. 589–597.

[CrossRef]
Wegner,
A.
, and
Witt,
G.
, 2012, “
Correlation of Process Parameters and Part Properties in Laser Sintering Using Response Surface Modeling,” Phys. Procedia,
39, pp. 480–490.

[CrossRef]
Bacchewar,
P. B.
,
Singhal,
S. K.
, and
Pandey,
P. M.
, 2007, “
Statistical Modelling and Optimization of Surface Roughness in the Selective Laser Sintering Process,” Proc. Inst. Mech. Eng. Part B,
221(1), pp. 35–52.

[CrossRef]
Kline,
S. J.
, and
McClintock,
F. A.
, 1953, “
Describing the Uncertainties in Single Sample Experiments,” Mech. Eng.,
75(1), pp. 3–8.

Ning,
Y.
,
Wong,
Y. S.
,
Fuh,
J. Y. H.
, and
Loh,
H. T.
, 2006, “
An Approach to Minimize Build Errors in Direct Metal Laser Sintering,” IEEE Trans. Autom. Sci. Eng.,
3(1), pp. 73–80.

[CrossRef]
Ealy,
B.
,
Calderon,
L.
,
Wang,
W.
,
Kapat,
J.
,
Mingareev,
I.
,
Richardson,
M.
, and
Valentin,
R.
, 2016, “
Characterization of Laser Additive Manufacturing-Fabricated Porous Superalloys for Turbine Components,” ASME J. Eng. Gas Turbines Power,
139(10), p. 102102.

Maurer,
M.
,
Sierra,
P.
, and
Meng,
P.
, 2016, “Reheat Burner Front Panel Produced by Additive Manufacturing Challenges, Strategies and Engine Validation,” ASME Paper No. GT2016-57458.

Stimpson,
C. K.
,
Snyder,
J. C.
, and
Thole,
K. A.
, 2016, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels,” ASME J. Turbomach.,
139(2), p. 021003.

[CrossRef]
Martinelli,
L.
, and
Jameson,
A.
, 2012, “
Computational Aerodynamics: Solvers and Shape Optimization,” ASME J. Heat Transfer,
135(1), p. 011002.

[CrossRef]
Belegundu,
A.
, and
Chandrupatla,
T.
, 2011, Optimization Concepts and Applications in Engineering,
Cambridge University Press, New York.

Chi,
Z.
,
Liu,
H.
,
Zang,
S.
, and
Jiao,
G.
, 2015, “Conjugate Heat Transfer Optimization of the Nonuniform Impingement Cooling Structure of a HPT 2nd Stage Vane,” ASME Paper No. GT2015-42097.

Verstraete,
T.
,
Amaral,
S.
,
Van den Braembussche,
R.
, and
Arts,
T.
, 2010, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization,” ASME J. Turbomach.,
132(2), p. 021014.

[CrossRef]
Abdoli,
A.
, and
Dulikravich,
G. S.
, 2014, “
Multi-Objective Design Optimization of Branching, Multifloor, Counterflow Microheat Exchangers,” ASME J. Heat Transfer,
136(10), p. 101801.

Lu,
S.
,
Qiang,
Z.
,
Wen,
F.
, and
Teng,
J.
, 2015, “Aerodynamic and Heat Transfer Optimization of One Stage Air-Cooled Turbine,” ASME Paper No. GT2015-42974.

Willeke,
S.
, and
Verstraete,
T.
, 2015, “Adjoint Optimization of an Internal Cooling Channel U-Bend,” ASME Paper No. GT2015-43423.

Morimoto,
K.
,
Suzuki,
Y.
, and
Kasagi,
N.
, 2010, “
Optimal Shape Design of Compact Heat Exchangers Based on Adjoint Analysis of Momentum and Heat Transfer,” J. Therm. Sci. Technol.,
5(1), pp. 24–35.

[CrossRef]
Wang,
C.
,
Montanari,
F.
, and
Hill,
D. C.
, 2015, “Application of Adjoint Solver to Optimization of Fin Heat Exchanger,” ASME Paper No. GT2015-43293.

Xue,
L.
,
Li,
Y.
,
Chen,
J.
, and
Wang,
S.
, 2015, “Laser Consolidation—A Novel Additive Manufacturing Process for Making Net-Shape Functional Metallic Components for Gas Turbine,” ASME Paper No. GT2015-43971.

Dede,
E. M.
,
Joshi,
S. N.
, and
Zhou,
F.
, 2015, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink,” ASME J. Mech. Des.,
137(11), p. 111403.

Pietropaoli,
M.
,
Ahlfeld,
R.
,
Montomoli,
F.
,
Caini,
A.
, and
D'Ercole,
M.
, 2016, “Design for Additive Manufacturing: Internal Channel Optimization,” ASME Paper No. GT2016-57318.

Dirker,
J.
, and
Meyer,
J. P.
, 2013, “
Topology Optimization for an Internal Heat-Conduction Cooling Scheme in a Square Domain for High Heat Flux Applications,” ASME J. Heat Transfer,
135(11), p. 111010.

[CrossRef]ANSYS, 2015, “ANSYS FLUENT,” ANSYS, Inc., Canonsburg, PA.

Pointwise, 2015, “Pointwise,” Pointwise, Fort Worth, TX.

Gee,
D. L.
, and
Webb,
R. L.
, 1980, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes,” Int. J. Heat Mass Transfer,
23(8), pp. 1127–1136.

[CrossRef]
Boger,
D. A.
, 2013, A Continuous Adjoint Approach to Design Optimization in Multiphase Flow,
Penn State University, University Park, PA.

EOS GmbH, 2014, “EOS NickelAlloy IN718 for EOSINT M 270 Systems,” Material Data Sheet M4, Electro Optical Systems, Munich, Germany.

AliCat, 2014, “Mass Flow Controller—Operating Manual,” Alicat Scientific, Tucson, AZ.