Abstract

The present paper is related to a research activity concerning self-balancing vehicles, with particular reference to the interaction between driver and vehicle’s dynamics, at the aim to investigate safety management and strategies. In particular, the design process of a self-balancing vehicle with the target to be used as a test rig for safety investigations is presented. Besides the definition of the mechanical configuration, the design process includes also the choice of the motor/transmission unit, the design of the control system and the design of sensors related to vehicle/driver interaction. For design purposes, a simplified two degrees-of-freedom (DOF) planar model has been considered with the driver fixed to the vehicle chassis. In order to test the suitability of the designed vehicle for safety investigations, a multibody model of the vehicle designed and of a driver with three driven joints is also presented. Such model allows to simulate the interaction between human (driver) and machine (vehicle), taking into consideration also the coupling between longitudinal motion and turn, and the presence of tires between vehicle and ground. By means of co-simulations between the multibody model (developed with adams) and the controller (modeled with matlab/simulink), tests have been performed showing the possibility to detect influence of the driver’s behavior on the vehicle’s dynamics.

References

1.
D’Arrigo
,
A.
,
1997
, “
Veicolo Elettrico Sperimentale a Due Ruote Parallele Coassiali Indipendenti
,” MS thesis,
EPFL/Politecnico di Milano
,
Lausanne, Switzerland/Milan, Italy
.
2.
Grasser
,
F.
,
D’Arrigo
,
A.
,
Colombi
,
S.
, and
Rufer
,
A.
,
2002
, “
Joe: A Mobile, Inverted Pendulum
,”
IEEE Trans. Ind. Electron.
,
49
(
1
), pp.
107
114
.
3.
Huang
,
J.
,
Ding
,
F.
,
Fukuda
,
T.
, and
Matsuno
,
T.
,
2013
, “
Modelling and Velocity Control of a Novel Narrow Vehicle Based on Mobile Inverted Pendulum
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1607
1617
.
4.
Larimi
,
S. R.
,
Zarafshan
,
P.
, and
Moosavian
,
S. A. A.
,
2015
, “
A New Stabilization Algorithm for a Two-Wheeled Mobile Robot Aided by Reaction Wheel
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
1
), p.
011009
.
5.
Xua
,
J.
,
Shanga
,
S.
,
Yud
,
G.
,
Qie
,
H.
,
Wangd
,
Y.
, and
Xu
,
S.
,
2016
, “
Are Electric Self-Balancing Scooters Safe in Vehicle Crash Accidents?
,”
Accident Anal. Prevent.
,
87
, pp.
102
116
.
6.
Ashurst
,
J.
, and
Wagner
,
B.
,
2015
, “
Injuries Following Segway Personal Transporter Accidents: Case Report and Review of the Literature
,”
Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health
,
16
(
5
), pp.
693
695
.
7.
Gitelman
,
V.
,
Korchatov
,
A.
, and
Hakkert
,
S.
,
2020
, “
Alternative Transport Means in City Centers: Exploring the Levels of Use, Typical Behaviours and Risk Factors
,”
European Transport – Trasporti Europei
, (
77
), pp.
1
11
.
8.
Akter
,
S.
,
Mamun
,
M. M. H.
,
Mwakalonge
,
J. L.
,
Comert
,
G.
, and
Siuhi
,
S.
,
2021
, “
A Policy Review of Electric Personal Assistive Mobility Devices
,”
Transp. Res. Interdiscip. Perspect.
,
11
, p.
100426
.
9.
Boglietti
,
S.
,
Barabino
,
B.
, and
Maternini
,
G.
,
2021
, “
Survey on E-Powered Micro Personal Mobility Vehicles: Exploring Current Issues Towards Future Developments
,”
Sustainability (Switzerland)
,
13
(
7
), p.
3692
.
10.
Kim
,
Y.
, and
Kwon
,
S.
,
2021
, “
A Disturbance Rejection Control Method for An Inverted Pendulum Mobile Robot on Slopes
,”
2021 18th International Conference on Ubiquitous Robots, UR 2021
,
Gangneung-si, Gangwon-do, South Korea
, pp.
585
588
.
11.
Haitao
,
Z.
,
Feng
,
H.
,
Xu
,
L.
,
Zhang
,
S.
, and
Fu
,
Y.
,
2021
, “
Control of the Two-Wheeled Inverted Pendulum (TWIP) Robot in Presence of Model Uncertainty and Motion Restriction
,”
Ind. Rob.
,
48
(
1
), pp.
29
44
.
12.
Gurriet
,
T.
,
Mote
,
M.
,
Singletary
,
A.
,
Nilsson
,
P.
,
Feron
,
E.
, and
Ames
,
A. D.
,
2020
, “
A Scalable Safety Critical Control Framework for Nonlinear Systems
,”
IEEE Access
,
8
, p.
187249
187275
.
13.
Jeyeon
,
K.
,
Kenta
,
S.
,
Naohisa
,
H.
,
Kashevnik
,
A.
,
Kohji
,
T.
,
Seiichi
,
M.
,
Yusuke
,
T.
,
Osamu
,
M.
, and
Ali
,
B.
,
2019
, “
Context-Based Rider Assistant System for Two Wheeled Self-Balancing Vehicles
,”
SPIIRAS Proc.
,
18
(
3
), pp.
583
614
.
14.
Almeshal
,
A. M.
,
Goher
,
K. M.
, and
Tokhi
,
M. O.
,
2013
, “
Dynamic Modelling and Stabilization of a New Configuration of Two Wheeled Machines
,”
Rob. Auton. Syst.
,
61
(
5
), pp.
443
472
.
15.
Haddout
,
S.
,
2018
, “
Nonlinear Reduced Dynamics Modelling and Simulation of Two-Wheeled Self-Balancing Mobile Robot: Segway System
,”
Syst. Sci. Control Eng.
,
6
(
1
), pp.
1
11
.
16.
Ahmed
,
A. H.
,
Aburas
,
O. E.
,
Meelad
,
N. A.
, and
Abu-Raas
,
A. A.
,
2021
, “
Modeling and Control of Two Wheels Robot Using Linear Quadratic Regulators
,”
2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2021 – Proceedings
,
Tripoli, Libya
, pp.
193
197
.
17.
Yokota
,
K.
, and
Murakami
,
T.
,
2020
,
Control of Two-Wheeled Wheelchair Considering a Model of Step Climbing and Human Posture
, Vol.
588
,
Springer Verlag
.
18.
Curiel-Olivares
,
G.
,
Linares-Flores
,
J.
,
Guerrero-Castellanos
,
J. F.
, and
Hernández-Méndez
,
A.
,
2021
, “
Self-Balancing Based on Active Disturbance Rejection Controller for the Two-in-Wheeled Electric Vehicle, Experimental Results
,”
Mechatronics
,
76
, p.
102552
.
19.
Johnson
,
T.
,
Zhou
,
S.
,
Cheah
,
W.
,
Mansell
,
W.
,
Young
,
R.
, and
Watson
,
S.
,
2020
, “
Implementation of a Perceptual Controller for An Inverted Pendulum Robot
,”
J. Intell. Robot. Syst.: Theory Appl.
,
99
(
3–4
), pp.
683
692
.
20.
Ghaffari
,
A.
,
Shariati
,
A.
, and
Shamekhi
,
A. H.
,
2016
, “
A Modified Dynamical Formulation for Two-Wheeled Self-Balancing Robots
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
217
230
.
21.
Doung
,
S.
, and
Wasiwitono
,
U.
,
2021
, “
Multibody Dynamics Modeling and Control of Wheelchair Balancing System
,”
Proceedings – 2021 International Seminar on Intelligent Technology and Its Application: Intelligent Systems for the New Normal Era, ISITIA 2021
,
Virtual, Online
, pp.
123
128
.
22.
Cornagliotto
,
V.
, and
Pastorelli
,
S.
,
2020
, “
Simplified Model of a Single-Wheeled Self-Balancing Robot in Mathworks® Simscape Multibody™
,”
Int. J. Mech. Control
,
21
(
1
), pp.
147
155
.
23.
Yang
,
L.
,
Liu
,
S.
, and
Liu
,
L.
,
2020
,
Simulation Analysis of Self-Balancing Chassis Based on ADAMS Software
, Vol.
1146
,
Springer
.
24.
Jeong
,
S.
,
Kouzai
,
K.
, and
Noguchi
,
S.
,
2016
, “
Influence of a Rider’s Rapid Weight-Shifting Motion on the Braking Behavior of a Self-Balancing Personal Mobility Vehicle
,”
Adv. Rob.
,
30
(
7
), pp.
449
458
.
25.
Ciezkowski
,
M.
,
2016
, “
Method for Determination of Interaction Between a Two-Wheeled Self-Balancing Vehicle and Its Rider
,”
Mechanika
,
22
(
5
), pp.
416
424
.
26.
Kovacs
,
B. A.
,
Stepan
,
G.
,
Wang
,
Z.
, and
Insperger
,
T.
,
2019
, “
Electro-Mechanical Model of a Two-Wheeled Vehicle Balancing a Passive Human Subject
,”
Proceedings – 2019 IEEE International Conference on Mechatronics, ICM 2019
,
Ilmenau, Germany
, pp.
678
683
.
27.
Tran
,
K. G.
,
Nguyen
,
T. T.
,
Pham
,
T. Q.
,
Nguyen
,
P. D.
,
Nguyen
,
D. V.
,
Nguyen
,
P. A.
,
Pham
,
H. M.
,
Nguyen
,
P. D.
, and
Nguyen
,
N. H.
,
2021
, “
Control of Twir Using LQR Controller and Compound Disturbance Observer
,”
2021 2nd International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics, ICA-SYMP 2021
,
Bangkok, Thailand
.
28.
Rengaraj
,
R.
,
Venkatakrishnan
,
G. R.
,
Moorthy
,
P.
,
Pratyusha
,
R.
, and
Veena
,
K.
,
2021
,
Implementation of Controller for Self-Balancing Robot
, Vol.
204
,
Springer Science and Business Media Deutschland GmbH
.
29.
Chen
,
L.
,
Wang
,
H.
,
Huang
,
Y.
,
Ping
,
Z.
,
Yu
,
M.
,
Zheng
,
X.
,
Ye
,
M.
, and
Hu
,
Y.
,
2020
, “
Robust Hierarchical Sliding Mode Control of a Two-Wheeled Self-Balancing Vehicle Using Perturbation Estimation
,”
Mech. Syst. Signal Process.
,
139
, p.
106584
.
30.
Chen
,
L.
,
Liu
,
J.
,
Huang
,
H.
,
Hu
,
Y.
,
Yu
,
M.
,
Zheng
,
X.
,
Ye
,
M.
, and
Zhang
,
J.
,
2021
, “
Robust Control of Reaction Wheel Bicycle Robot Via Adaptive Integral Terminal Sliding Mode
,”
Nonlinear Dyn.
,
104
(
3
), pp.
2291
2302
.
31.
Lee
,
S.
,
Kim
,
Y.
, and
Kwon
,
S.
,
2021
, “
Real-Time Estimation and Compensation Technique for Eccentricity of a Self-Balancing Vehicle Using Loadcells
,”
J. Inst. Control Rob. Syst.
,
27
(
3
), pp.
255
261
.
32.
Chien
,
S.
,
Wang
,
A.
, and
Wong
,
C.
,
2020
, “
Design and Implementation of Two-Wheeled Self-Balancing Vehicle Based on Load Sensors
,”
2020 International Conference on System Science and Engineering, ICSSE 2020
,
Kagawa, Japan
.
33.
Righettini
,
P.
,
Lorenzi
,
V.
,
Zappa
,
B.
, and
Strada
,
R.
,
2019
, “
Human Driver Interaction With Self-Balancing Vehicles’ Dynamics
,”
Int. J. Recent Technol. Eng.
,
8
(
4
), pp.
10698
10705
.
34.
Pacejka
,
H.
,
Bakker
,
E.
, and
Lidner
,
L.
,
1989
, “
A New Tire Model With an Application in Vehicle Dynamics Studies
,” SAE Paper 890087.
35.
Pacejka
,
H.
, and
Bakker
,
E.
,
1992
, “
The Magic Formula Tyre Model
,”
Vehicle System Dynamics
,
21
(
sup1
).
36.
Pacejka
,
H.
,
2002
,
Tyre and Vehicle Dynamics
,
Butterworth-Heinemann
,
Oxford
.
37.
Mcconville
,
J.
,
Clauser
,
C. E.
,
Churchill
,
T.
,
Cuzzi
,
J.
, and
Kaleps
,
I.
,
1980
, “Anthropometric Relationships of Body and Body Segment Moments of Inertia,” Technical Report AFAMRL-TR-80-119,
Aerospace Medical Research Laboratory, Wright–Patterson Air Force Base
,
Dayton, OH
.
38.
Zappa
,
B.
,
Casolo
,
F.
, and
Legnani
,
G.
,
1995
, “
Analysis and Synthesis of 3D Motion for Multi-Body Systems With Regard to Sport Performances
,”
IX World Congress on the Theory of Machines and Mechanisms
,
Milano, Italy
.
39.
Dumas
,
R.
,
Che‘ze
,
L.
, and
Verriest
,
J.-P.
,
2007
, “
Adjustments to Mcconville et al. and Young et al. Body Segment Inertial Parameters
,”
J. Biomech.
,
40
(
7
), pp.
543
553
.
You do not currently have access to this content.