Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Weld seams of in-service pressure storage equipment, such as spherical tanks, require regular inspection to ensure safe operation. Wall-climbing robots can replace manual operations, increasing inspection efficiency and reducing maintenance costs. High precision and fast weld seam identification and tracking are beneficial for improving the automated navigation and spatial positioning of wall-climbing robots. This study proposes a weld seam recognition and tracking method with the omnidirectional wall-climbing robot for spherical tank inspection. Based on deep learning networks, the robot has a front-mounted camera to recognize weld seams and extract weld paths. Weld seam deviation data (drift angle and offset distance) were used in real time to provide feedback on the robot's relative position. For the robot to quickly correct deviations and track weld seams, a seam path-tracking controller based on sliding mode control was designed and simulated. Weld recognition experiments revealed that the robot can accurately recognize and extract weld paths, and the recognition time for each image was approximately 0.25 s. In the weld seam tracking experiments, the robot could successfully track longitudinal and transverse weld seams at different speeds (from 0.05 to 0.2 m/s). During the process of weld seam tracking, the robot angle error was kept within ±3 deg, and the maximum offset distance was less than ±35 mm. Field tests on a 3000-m3 spherical tank were conducted to verify the practicability and effectiveness of the weld seam tracking system. This robotic system can autonomously complete weld seam identification and tracking, which promotes the automation of spherical tank inspection and maintenance.

References

1.
Ge
,
D.
,
Tang
,
Y.
,
Ma
,
S.
,
Matsuno
,
T.
, and
Ren
,
C.
,
2020
, “
A Pressing Attachment Approach for a Wall-Climbing Robot Utilizing Passive Suction Cups
,”
Robotics
,
9
(
2
), p.
26
.
2.
Chen
,
N.
,
Shi
,
K.
, and
Li
,
X.
,
2020
, “
Theoretical and Experimental Study and Design Method of Blade Height of a Rotational-Flow Suction Unit in a Wall-Climbing Robot
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
045002
.
3.
Sakagami
,
N.
,
Yumoto
,
Y.
,
Takebayashi
,
T.
, and
Kawamura
,
S.
,
2019
, “
Development of Dam Inspection Robot With Negative Pressure Effect Plate
,”
J. Field Rob.
,
36
(
8
), pp.
1422
1435
.
4.
Fujita
,
M.
,
Ikeda
,
S.
,
Fujimoto
,
T.
,
Shimizu
,
T.
,
Ikemoto
,
S.
, and
Miyamoto
,
T.
,
2018
, “
Development of Universal Vacuum Gripper for Wall-Climbing Robot
,”
Adv. Rob.
,
32
(
6
), pp.
283
296
.
5.
Zhang
,
W.
,
Zhang
,
W.
, and
Sun
,
Z.
,
2021
, “
A Reconfigurable Soft Wall-Climbing Robot Actuated by Electromagnet
,”
Int. J. Adv. Rob. Syst.
,
18
(
2
), p.
1729881421992285
.
6.
Zhang
,
X.
,
Zhang
,
M.
,
Jiao
,
S.
,
Sun
,
L.
, and
Li
,
M.
,
2024
, “
Design and Optimization of the Wall Climbing Robot for Magnetic Particle Detection of Ship Welds
,”
J. Mar. Sci. Eng.
,
12
(
4
), p.
610
.
7.
Fan
,
J.
,
Xu
,
T.
,
Fang
,
Q.
,
Zhao
,
J.
, and
Zhu
,
Y.
,
2020
, “
A Novel Style Design of a Permanent-Magnetic Adsorption Mechanism for a Wall-Climbing Robot
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
035001
.
8.
Li
,
B.
,
Ushiroda
,
K.
,
Yang
,
L.
,
Song
,
Q.
, and
Xiao
,
J.
,
2017
, “
Wall-Climbing Robot for Non-Destructive Evaluation Using Impact-Echo and Metric Learning SVM
,”
Int. J. Intell. Rob. Appl.
,
1
, pp.
255
270
.
9.
Dissanayake
,
M.
,
Sattar
,
T. P.
,
Lowe
,
S.
,
Pinson
,
I.
, and
Gan
,
T. H.
,
2018
, “
Adaptable Legged-Magnetic Adhesion Tracked Wheel Robotic Platform for Misaligned Mooring Chain Climbing and Inspection
,”
Ind. Robot Int. J.
,
45
(
5
), pp.
634
646
.
10.
Zhou
,
Q.
, and
Li
,
X.
,
2018
, “
Experimental Investigation on Climbing Robot Using Rotation-Flow Adsorption Unit
,”
Rob. Auton. Syst.
,
105
, pp.
112
120
.
11.
Chang
,
S.
,
Yang
,
F.
,
Qian
,
X.
,
Cui
,
S.
,
Wang
,
J.
,
Zhao
,
L.
, and
Ren
,
R.
,
2024
, “
Motion Characteristics of a Reverse Thrust Adsorption Wall-Climbing Robot With Multi-Degree-of-Freedom Propeller
,”
Int. J. Rob. Autom.
,
39
(
2
), pp.
137
149
.
12.
Vega-Heredia
,
M.
,
Mohan
,
R. E.
,
Wen
,
T. Y.
,
Siti'Aisyah
,
J.
,
Vengadesh
,
A.
,
Ghanta
,
S.
, and
Vinu
,
S.
,
2019
, “
Design and Modelling of a Modular Window Cleaning Robot
,”
Autom. Constr.
,
103
, pp.
268
278
.
13.
Xu
,
F.
,
Meng
,
F.
,
Jiang
,
Q.
, and
Peng
,
G.
,
2020
, “
Grappling Claws for a Robot to Climb Rough Wall Surfaces: Mechanical Design, Grasping Algorithm, and Experiments
,”
Rob. Auton. Syst.
,
128
, p.
103501
.
14.
Bian
,
S.
,
Wei
,
Y.
,
Xu
,
F.
, and
Kong
,
D.
,
2021
, “
A Four-Legged Wall-Climbing Robot With Spines and Miniature Setae Array Inspired by Longicorn and Gecko
,”
J. Bionic Eng.
,
18
(
2
), pp.
292
305
.
15.
Huang
,
X.
,
Zhang
,
C.
,
Feng
,
W.
,
Zhang
,
X.
,
Zhang
,
D.
, and
Liu
,
Y.
,
2024
, “
A Bionic Starfish Adsorption Crawling Soft Robot
,”
J. Bionic Eng.
,
21
(
1
), pp.
149
165
.
16.
Yang
,
L.
,
Liu
,
Y.
, and
Peng
,
J.
,
2020
, “
Advances Techniques of the Structured Light Sensing in Intelligent Welding Robots: A Review
,”
Int. J. Adv. Manuf. Technol.
,
110
(
3
), pp.
1027
1046
.
17.
Dong
,
Z.
,
Mai
,
Z.
,
Yin
,
S.
,
Wang
,
J.
,
Yuan
,
J.
, and
Fei
,
Y.
,
2020
, “
A Weld Line Detection Robot Based on Structure Light for Automatic NDT
,”
Int. J. Adv. Manuf. Technol.
,
111
(
7–8
), pp.
1831
1845
.
18.
Ye
,
H.
,
Liu
,
Y.
, and
Su
,
K.
,
2021
, “
A Modified Method for Welding Seam Location of Tube-Sheet Welding Based on Image Edge Segmentation
,”
2021 IEEE Fourth Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)
,
Chongqing, China
,
June 18–20
, Vol. 4, IEEE, pp.
1913
1917
.
19.
Wang
,
Z.
,
Zhang
,
K.
,
Chen
,
Y.
,
Luo
,
Z.
, and
Zheng
,
J.
,
2017
, “
A Real-Time Weld Line Detection for Derusting Wall-Climbing Robot Using Dual Cameras
,”
J. Manuf. Processes
,
27
, pp.
76
86
.
20.
Maglietta
,
R.
,
Milella
,
A.
,
Caccia
,
M.
, and
Bruzzone
,
G.
,
2018
, “
A Vision-Based System for Robotic Inspection of Marine Vessels
,”
Signal, Image Video Process.
,
12
(
3
), pp.
471
478
.
21.
Ma
,
Y.
,
Fan
,
J.
,
Zhou
,
Z.
,
Zhao
,
S.
,
Jing
,
F.
, and
Tan
,
M.
,
2024
, “
WeldNet: A Deep Learning Based Method for Weld Seam Type Identification and Initial Point Guidance
,”
Expert Syst. Appl.
,
238
, p.
121700
.
22.
Wang
,
J.
,
Mu
,
C.
,
Mu
,
S.
,
Zhu
,
R.
, and
Yu
,
H.
,
2023
, “
Welding Seam Detection and Location: Deep Learning Network-Based Approach
,”
Int. J. Press. Vessels Pip.
,
202
, p.
104893
.
23.
Li
,
J.
,
Dong
,
L.
,
Tian
,
M.
,
Tu
,
C.
, and
Wang
,
X.
,
2023
, “
Adjustable Magnetic Adsorption Omnidirectional Wall-Climbing Robot for Tank Inspection
,”
Proceedings of 2022 International Conference on Intelligent Systems Design and Engineering Applications
,
Tokyo, Japan
,
May 13–15
, pp.
67
80
.
24.
Gui
,
C.
,
Li
,
J.
,
Tu
,
C. L.
,
Wang
,
X. S.
, and
Zheng
,
K.
,
2021
, “
Design and Analysis of Curvature Adaptive Wall Climbing Robot
,”
2021 IEEE Far East NDT New Technology & Application Forum (FENDT)
,
Kunming, China
,
Dec. 14–17
, IEEE, pp.
177
184
.
25.
Li
,
J.
,
Feng
,
H.
,
Tu
,
C.
,
Jin
,
S.
, and
Wang
,
X.
,
2019
, “
Design of Inspection Robot for Spherical Tank Based on Mecanum Wheel
,”
2019 Far East NDT New Technology & Application Forum (FENDT)
,
Qingdao, China
,
June 24–27
, pp.
218
224
..
26.
He
,
K.
,
Gkioxari
,
G.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2017
, “
Mask r-cnn
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
, pp.
2961
2969
.
27.
Liu
,
S.
,
Qi
,
L.
,
Qin
,
H.
,
Shi
,
J.
, and
Jia
,
J.
,
2018
, “
Path Aggregation Network for Instance Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
8759
8768
.
28.
Fu
,
C. Y.
,
Shvets
,
M.
, and
Berg
,
A. C.
,
2019
, “
RetinaMask: Learning to Predict Masks Improves State-of-the-Art Single-Shot Detection for Free
,” arXiv:1901.03353.
29.
Li
,
Y.
,
Qi
,
H.
,
Dai
,
J.
,
Ji
,
X.
, and
Wei
,
Y.
,
2017
, “
Fully Convolutional Instance-Aware Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
2359
2367
.
30.
Bolya
,
D.
,
Zhou
,
C.
,
Xiao
,
F.
, and
Lee
,
Y. J.
,
2019
, “
Yolact: Real-Time Instance Segmentation
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov.2
.
31.
Bolya
,
D.
,
Zhou
,
C.
,
Xiao
,
F.
, and
Lee
,
Y. J.
,
2022
, “
YOLACT++ Better Real-Time Instance Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
44
(
2
), pp.
1108
1121
.
32.
Lin
,
T. Y.
,
Dollár
,
P.
,
Girshick
,
R.
,
He
,
K.
,
Hariharan
,
B.
, and
Belongie
,
S.
,
2017
, “
Feature Pyramid Networks for Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
2117
2125
.
33.
Shelhamer
,
E.
,
Long
,
J.
, and
Darrell
,
T.
,
2017
, “
Fully Convolutional Networks for Semantic Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
4
), pp.
640
651
.
You do not currently have access to this content.