A realistic model experiment on hemodynamics was performed to study correlations between wall shear stresses measured in a cast model of the aortic bifurcation and intimal thickness at each corresponding site of the native blood vessel from which the cast had been made. An elastic model of a 54 year old human aortic bifurcation was made of a polyurethane elastomer using a dipping method, and was perfused with Newtonian or non-Newtonian fluid under physiologic pulsatile flow condition. Local flow velocities were measured with an optical-fibered, 3-dimensional laser Doppler anemometer (3D-LDA) to determine wall shear stresses. Distribution of intimal thickness was determined using histological specimens of the native blood vessel. The results obtained are: 1) Non-Newtonian fluid rheology increased wall shear stresses; 2) Positive correlations were observed between intimal thickness and the maximum instantaneous wall shear stress, and 3) However, if we take only the data from the circumference at the level of the flow divider tip, there were negative correlations between them.

1.
Anayiotos, A. S., Giddens, D. P., Jones, S. A., Glagov, S., and Zarins, C. K., 1991, “Effects of Arterial Wall Distensibility on the Near Wall Flowfield in a Model of a Human Carotid Bifurcation,” 1991 Advances in Bioengineering, R. Vanderby, Jr., ed., ASME, New York, pp. 17–19.
2.
Brookshier
K. K.
, and
Tarbell
J. M.
,
1991
, “
Effects of Hematocrit on Wall Shear Rate in Oscillatory Flow: Do the Elastic Properties of Blood Play a Role?
,”
Biorheology
, Vol.
28
, pp.
569
587
.
3.
Caro
C. G.
,
Fitz-Gerald
J. M.
, and
Schroter
R. C.
,
1971
, “
Atheroma and Arterial Shear Observations, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. Royal Soc. London, Series B.
, Vol.
177
, pp.
109
159
.
4.
Cho, Y. I., and Kensey, K., 1989, “Effects of the Non-Newtonian Viscosity of Blood on Hemodynamics of Diseased Arterial Flows,” 1989 Advances in Bioengineering, B. Rubinsky, ed., ASME, New York, pp. 147–148.
5.
Deters
O. J.
,
Bargeron
C. B.
,
Mark
F. F.
, and
Friedman
M. H.
,
1986
, “
Measurement of Wall Motion and Wall Shear in a Compliant Arterial Cast
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
108
, pp.
355
358
.
6.
Duncan
D. D.
,
Bargeron
C. B.
,
Borchardt
S. E.
,
Deters
O. J.
,
Gearhart
S. A.
,
Mark
F. F.
, and
Friedman
M. H.
,
1990
, “
The Effect of Compliance on Wall Shear in Casts of a Human Aortic Bifurcation
,”
ASME JOURNAL OF BLOMECHANICAL ENGINEERING
, Vol.
112
, pp.
183
188
.
7.
Fatemi
R. S.
, and
Rittgers
S. E.
,
1994
, “
Derivation of Shear Rates from Near Wall LDA Measurements Under Steady and Pulsatile Flow Conditions
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
361
368
.
8.
Friedman
M. H.
,
Bargeron
C. B.
,
Hutchins
G. M.
,
Mark
F. F.
, and
Deters
O. J.
,
1980
, “
Hemodynamic Measurements in Human Arterial Casts, and Their Correlation with Histology and Luminal Area
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
247
251
.
9.
Friedman
M. H.
,
Hutchins
G. M.
,
Bargeron
C. B.
,
Deters
O. J.
, and
Mark
F. F.
,
1981
, “
Correlation Between Intimal Thickness and Fluid Shear in Human Arteries
,”
Atherosclerosis
, Vol.
39
, pp.
425
436
.
10.
Friedman
M. H.
,
Deters
O. J.
,
Bargeron
C. B.
,
Hutchins
G. M.
, and
Mark
F. F.
,
1986
, “
Shear-Dependent Thickening of the Human Arterial Intima
,”
Atherosclerosis
, Vol.
60
, pp.
161
171
.
11.
Friedman
M. H.
,
Bargeron
C. B.
,
Deters
O. J.
,
Hutchins
G. M.
, and
Mark
F. F.
,
1987
, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Artery Branch
,”
Atherosclerosis
, Vol.
68
, pp.
27
33
.
12.
Friedman
M. H.
,
1989
, “
A Biologically Plausible Model of Thickening of Arterial Intima Under Shear
,”
Arteriosclerosis
, Vol.
9
, pp.
511
522
.
13.
Friedman
M. H.
,
Bargeron
C. B.
,
Mark
F. F.
, and
Duncan
D. D.
,
1989
, “
Effects of Non-Newtonian Rheology on Wall Shear in a Compliant Cast of a Human Aortic Bifurcation
,”
Biorheology
, Vol.
26
, p.
602
602
.
14.
Friedman
M. H.
,
Bargeron
C. B.
,
Duncan
D. D.
,
Hutchins
G. M.
, and
Mark
F. F.
,
1992
, “
Effects of Arterial Compliance and Non-Newtonian Rheology on Correlations Between Intimal Thickness and Wall Shear
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
317
320
.
15.
Friedman
M. H.
,
1993
, “
Arteriosclerosis Research Using Vascular Flow Models: From 2-D Branches to Compliant Replicas
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
595
601
.
16.
Fry
D. L.
,
1969
, “
Certain Histological and Chemical Response of the Vascular Interface to Acutely Induced Mechanical Stress in the Aorta of the Dog
,”
Circulation Research
, Vol.
24
, pp.
93
108
.
17.
Fukushima
T.
, and
Azuma
T.
,
1982
, “
The Horseshoe Vortex: A Secondary Flow Generated with Stenosis, Bifurcation and Branchings
,”
Biorheology
, Vol.
19
, pp.
143
154
.
18.
Hayashi
K.
,
Handa
H.
,
Nagasawa
S.
,
Okumura
A.
, and
Moritake
K.
,
1980
, “
Stiffness and Elastic Behavior of Human Intracranial and Extracranial Arteries
,”
J. of Biomechanics
, Vol.
13
, pp.
175
184
.
19.
Hayashi
K.
,
Nakamura
T.
,
Takano
H.
,
Umezu
M.
,
Taenaka
Y.
, and
Matsuda
T.
,
1984
, “
Design of Pusher-Plate-Type Left Ventricular Assist Device Based on Mechanical Analyses
,”
Artificial Organs
, Vol.
8
, pp.
204
214
.
20.
Hayashi
K.
,
Matsuda
T.
,
Takano
H.
,
Umezu
M.
,
Taenaka
Y.
, and
Nakamura
T.
,
1985
, “
Effects of Implantation on the Mechanical Properties of the Polyurethane Diaphragm of Left Ventricular Assist Devices
,”
Biomaterials
, Vol.
6
, pp.
82
88
.
21.
Hayashi
K.
, and
Nakamura
T.
,
1985
, “
Material Test System for the Evaluation of Mechanical Properties of Biomaterials
,”
J. of Biomedical Materials Research
, Vol.
19
, pp.
133
144
.
22.
Hayashi
K.
,
Takamizawa
K.
,
Saito
T.
,
Kira
K.
,
Hiramatsu
K.
, and
Kondo
K.
,
1989
, “
Elastic Properties and Strength of a Novel Small-Diameter, Compliant Polyurethane Vascular Graft
,”
J. of Biomedical Materials Research: Applied Biomaterials
, Vol.
23-A2
, pp.
229
244
.
23.
Hayashi
K.
,
1993
, “
Experimental Approaches on Measuring the Mechanical Properties and Constitutive Laws of Arterial Walls
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
481
488
.
24.
Inokuchi
K.
,
Kusaba
A.
,
Kamori
M.
,
Kina
M.
, and
Okadome
L.
,
1982
, “
Intraluminal Velocity Profile Analyzed from Flow Wave Forms
,”
Surgery
, Vol.
92
, pp.
1006
1015
.
25.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
, and
Glagov
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis
, Vol.
5
, pp.
293
302
.
26.
Liepsch, D., 1985, “Laser-Doppler-Measurements in True-to-Scale Human Elastic Models with Newtonian and non-Newtonian Fluids,” Forum on Unsteady Flows in Biological Systems, M. Friedman and D. C. Wiggert, eds., ASME, New York, pp. 29–32.
27.
Liepsch
D. W.
,
1986
, “
Flow in Tubes and Arteries—A Comparison
,”
Biorheology
, Vol.
23
, pp.
395
433
.
28.
Liepsch
D. W.
,
Poll
A.
,
Strigberger
J.
,
Sabbah
H. N.
, and
Stein
P. D.
,
1989
, “
Flow Visualization Studies in a Model of the Normal Human Aorta and Renal Arteries
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
III
, pp.
222
227
.
29.
Liepsch, D., 1990, “Flow Studies in a Rigid T-Junction Model with a non-Newtonian Fluid Using a 3-D Laser-Doppler Anemometer,” Biofluid Mechanics: Blood Flow in Large Vessels, D. Liepsch, ed., Springer-Verlag, Berlin, pp. 307–320.
30.
Liepsch
D. W.
,
Thurston
G.
, and
Lee
M.
,
1991
, “
Studies of Fluids Simulating Blood-Like Rheological Properties and Applications in Models of Arterial Branches
,”
Biorheology
, Vol.
28
, pp.
39
52
.
31.
Liepsch
D.
,
Moravec
S. T.
, and
Baumgort
R.
,
1992
, “
Some Flow Visualization and Laser-Doppler-Velocity Measurements in a True-to-Scale Elastic Model of a Human Aortic Arch—A New Model Technique
,”
Biorheology
, Vol.
29
, pp.
563
580
.
32.
Lou
Z.
, and
Yang
W.-J.
,
1993
, “
A Computer Simulation of the Blood Flow at the Aortic Bifurcation with Flexible Walls
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
306
315
.
33.
Mann
D. E.
, and
Tarbell
J. M.
,
1990
, “
Flow of non-Newtonian Blood Analog Fluids in Rigid Curved and Straight Artery Models
,”
Biorheology
, Vol.
27
, pp.
711
733
.
34.
Mark
F. F.
,
Bargeron
C. B.
,
Deters
O. J.
, and
Friedman
M. H.
,
1989
, “
Variations in Geometry and Shear Rate Distribution in Casts of Human Aortic Bifurcations
,”
J. of Biomechanics
, Vol.
22
, pp.
577
582
.
35.
Matsumoto
T.
,
Naiki
T.
, and
Hayashi
K.
,
1994
, “
Flow Visualization Analysis of Pulsatile Flow in Elastic Straight Tubes
,”
Biorheology
, Vol.
31
, pp.
365
381
.
36.
Moore
J. E.
,
Ku
D. N.
,
Zarins
C. K.
, and
Glagov
S.
,
1992
, “
Pulsatile Flow Visualization in the Abdominal Aorta Under Differing Physiologic Conditions: Implications for Increased Susceptibility to Atherosclerosis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
391
397
.
37.
Naiki
T.
,
Takemura
S.
, and
Hayashi
K.
,
1994
, “
Effect of Wall Elasticity on Pulsatile Flow in Aortic Bifurcation (Flow Visualization Study in Bifurcation Models)
,”
Trans. JSME, Series B
, Vol.
60
, pp.
3623
3629
.
38.
Naiki
T.
,
Hayashi
K.
, and
Takemura
S.
,
1995
a, “
An LDV and Flow Visualization Study of Pulsatile Flow in an Aortic Bifurcation Model
,”
Biorheology
, Vol.
32
, pp.
43
59
.
39.
Naiki
T.
,
Yanai
Y.
, and
Hayashi
K.
,
1995
b, “
Evaluation of High Polymer Solutions as Blood Analog Fluid (For the Model Study of Hemodynamics)
,”
J. of Japanese Society of Biorheology
, Vol.
9
, pp.
84
89
.
40.
Nazemi
M.
, and
Kleinstreuer
C.
,
1989
, “
Analysis of Particle Trajectories in Aortic Artery Bifurcations with Stenosis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, pp.
311
315
.
41.
Nazemi
M.
,
Kleinstreuer
C.
,
Archie
J. P.
, and
Sorrell
F. Y.
,
1989
, “
Fluid Flow and Plaque Formation in an Aortic Bifurcation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, pp.
316
324
.
42.
Nerem
R. M.
,
Levesque
M. J.
, and
Cornhill
J. F.
,
1981
, “
Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
, pp.
172
176
.
43.
Nerem
R. M.
,
1992
, “
Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
274
282
.
44.
Okano
M.
, and
Yoshida
Y.
,
1992
, “
Endothelial Cell Morphometry of Artherosclerotic Lesions and Flow Profiles at Aortic Bifurcations in Cholesterol Fed Rabbits
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
301
308
.
45.
Pedersen
E. M.
,
Yoganathan
A. P.
, and
Lefebvre
X. P.
,
1992
, “
Pulsatile Flow Visualization in a Model of the Human Abdominal Aorta and Aortic Bifurcation
,”
J. of Biomechanics
, Vol.
25
, pp.
935
944
.
46.
Pedersen
E. M.
,
Sung
H-W.
, and
Yoganathan
A. P.
,
1994
, “
Influence of Abdominal Aortic Curvature and Resting Versus Exercise Conditions on Velocity Fields in the Normal Abdominal Aortic Bifurcation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
347
354
.
47.
Rieu
R.
,
Friggi
A.
, and
Pelissier
R.
,
1985
, “
Velocity Distribution Along an Elastic Model of Human Arterial Tree
,”
J. Biomechanics
, Vol.
18
, pp.
703
715
.
48.
Siouffi
M.
,
Pelissier
R.
,
Farahifar
D.
, and
Rieu
R.
,
1984
, “
The Effect of Unsteadiness on the Flow Through Stenoses and Bifurcations
,”
J. of Biomechanics
, Vol.
17
, pp.
299
315
.
49.
Stein
P. D.
,
Sabbah
H. N.
,
Anbe
D. T.
, and
Walburn
F. J.
,
1979
, “
Blood Velocity in the Abdominal Aorta and Common Iliac Artery of Man
,”
Biorheology
, Vol.
16
, pp.
249
255
.
50.
Tarbell, J. M., and Chang, L-J., 1986, “Numerical Simulation of Oscillatory Flow in Elastic Curved Tubes,” Proceedings of the 5th International Conference on Mechanics in Medicine and Biology (Bologna, July 1-5, 1986), pp. 107–110.
51.
Walburn
F. J.
,
Sabbah
H. N.
,
Hawkins
E. T.
, and
Stein
P. D.
,
1980
, “
Construction of Molds of Complex Arterial Segments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
284
286
.
52.
Walburn
F. J.
, and
Stein
P. D.
,
1980
, “
Flow in a Symmetrically Branched Tube Simulating the Aortic Bifurcation: The Effects of Unevenly Distributed Flow
,”
Annals of Biomedical Engineering
, Vol.
8
, pp.
159
173
.
53.
Walburn
F. J.
,
Sabbah
H. N.
, and
Stein
P. D.
,
1981
, “
Flow Visualization in a Model of an Atherosclerotic Human Abdominal Aorta
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
, pp.
168
170
.
This content is only available via PDF.
You do not currently have access to this content.