Coronary flow estimates were made for a spiral coronary artery segment (identified from a post-mortem replica casting) by using a modified Dean number based on the approximate coil radius of curvature, as suggested earlier. The estimates were found to correlate experimental pressure drop data for helical coiled tubes. Over a physiological range of mean Reynolds numbers from 100 to 400 for blood flow through main coronary arteries, estimates of the flow resistance increase relative to a straight lumen segment ranged from about 20 to 80 percent, and were of similar magnitude to those found in a flow study in a sinuous coronary vessel segment with no spiral. [S0148-0731(00)01706-4]
Issue Section:
Technical Briefs
1.
Gorlin, R., 1976, Coronary Artery Disease, Vol. 11, Chap. 3, W. B. Saunders Co., Philadelphia, PA.
2.
Crawford
, D. W.
, Barndt
, Jr., R.
, and Back
, L. H.
, 1976
, “Surface Characteristics of Normal and Atherosclerotic Human Arteries, Including Observations Suggesting Interaction Between Flow and Intimal Morphology
,” Lab. Invest.
, 34
, No. 5
, pp. 463
–470
.3.
Cho
, Y. I.
, Back
, L. H.
, Crawford
, D. W.
, and Cuffel
, R. F.
, 1983
, “Experimental Study of Pulsatile and Steady Flow Through a Smooth Tube and an Atherosclerotic Coronary Artery Casting of Man
,” J. Biomech.
, 16
, No. 11
, pp. 933
–946
.4.
Vrints
, C. J. M.
, Bult
, H.
, Hitter
, E.
, Herman
, A. G.
, and Snoeck
, J. P.
, 1992
, “Impaired Endothelium-Dependent Cholinergic Coronary Vasodilation in Patients With Angina and Normal Coronary Arteriograms
,” J. Am. Coll. Cardiol.
, 19
, pp. 21
–31
.5.
Back
, L. H.
, Cho
, Y. I.
, Crawford
, D. W.
, and Cuffel
, R. F.
, 1984
, “Effect of Mild Atherosclerosis on Flow Resistance in a Coronary Artery Casting of Man
,” ASME J. Biomech. Eng.
, 106
, pp. 48
–53
.6.
Cho
, Y. I.
, Back
, L. H.
, and Crawford
, D. W.
, 1985
, “Effect of Simulated Hyperemia on the Flow Field in a Mildly Atherosclerotic Coronary Artery Casting of Man
,” Aviat., Space Environ. Med.
, 56
, No. 3
, pp. 212
–219
.7.
Back
, L. H.
, Radbill
, J. R.
, Cho
, Y. I.
, and Crawford
, D. W.
, 1986
, “Measurement and Prediction of Flow Through a Replica Segment of a Mildly Atherosclerotic Coronary Artery of Man
,” J. Biomech.
, 19
, No. 1
, pp. 1
–17
.8.
Marcus
, M. L.
, Harrison
, D. G.
, White
, C. W.
, McPherson
, D. D.
, Wilson
, R. F.
, and Kerber
, R. E.
, 1988
, “Assessing the Physiologic Significance of Coronary Obstructions in Patients: Importance of Diffuse Undetected Atherosclerosis
,” Prog. Cardiovasc. Dis.
, 31
, No. 1
, pp. 39
–56
.9.
Wilson
, R. F.
, and Laxon
, D. D.
, 1993
, “Caveat Emptor: A Clinician’s Guide to Assessing the Physiologic Significance of Arterial Stenoses
,” Cathet. Cardiovasc. Diagn.
, 29
, pp. 93
–98
.10.
Back
, L. H.
, Liem
, T. K.
, Kwack
, E. Y.
, and Crawford
, D. W.
, 1992
, “Flow Measurements in a Highly Curved Atherosclerotic Coronary Artery Cast of Man
,” ASME J. Biomech. Eng.
, 114
, pp. 232
–240
.11.
Dean
, W. R.
, 1927
, “Note on the Motion of Fluid in a Curved Pipe
,” Philos. Mag.
, 4
, pp. 208
–223
.12.
Dean
, W. R.
, 1928
, “The Streamline Motion of Fluid in a Curved Pipe
,” Philos. Mag.
, 5
, pp. 673
–695
.13.
Berger
, S. A.
, Talbot
, L.
, and Yao
, L. S.
, 1983
, “Flow in Curved Pipes
,” Annu. Rev. Fluid Mech.
, 15
, pp. 461
–512
.14.
Back
, L. H.
, Back
, M. R.
, Kwack
, E. Y.
, and Crawford
, D. W.
, 1988
, “Flow Measurements in a Human Femoral Artery Model With Reverse Lumen Curvature
,” ASME J. Biomech. Eng.
, 110
, pp. 300
–309
.15.
Back
, L. H.
, Kwack
, E. Y.
, and Crawford
, D. W.
, 1988
, “Flow Measurements in an Atherosclerotic Curved, Tapered Femoral Artery Model of Man
,” ASME J. Biomech. Eng.
, 110
, pp. 310
–319
.16.
Tuttle
, E. R.
, 1990
, “Laminar Flow in Twisted Pipes
,” J. Fluid Mech.
, 219
, pp. 545
–570
.17.
Kao
, H. C.
, 1987
, “Torsion Effect on Fully Developed Flow in a Helical Pipe
,” J. Fluid Mech.
, 184
, pp. 335
–356
.18.
Germano
, M.
, 1982
, “On the Effect of Torsion on a Helical Pipe Flow
,” J. Fluid Mech.
, 125
, pp. 1
–8
.19.
Wang
, C. Y.
, 1981
, “On the Low-Reynolds Number Flow in a Helical Pipe
,” J. Fluid Mech.
, 108
, pp. 185
–194
.20.
Murata
, S.
, Miyake
, Y.
, Inaba
, T.
, and Ogawa
, H.
, 1981
, “Laminar Flow in a Helically Coiled Pipe
,” Bull. JSME
, 24
, No. 188
, pp. 355
–362
.21.
Truesdell
, Jr., L. C.
, and Adler
, R. J.
, 1970
, “Numerical Treatment of Fully Developed Laminar Flow in Helically Coiled Tubes
,” AIChE J.
, 16
, pp. 1010
–1015
.22.
Mishra
, P.
, and Gupta
, S. N.
, 1979
, “Momentum Transfer in Curved Pipes. 1. Newtonian Fluids
,” Ind. Eng. Chem. Process Des. Dev.
, 18
, No. 1
, pp. 130
–137
.23.
Manlapaz
, R. L.
, and Churchill
, S. W.
, 1980
, “Fully Developed Laminar Flow in a Helically Coiled Tube of Finite Pitch
,” Chem. Eng. Commun.
, 7
, pp. 57
–78
.24.
Farrugia, M., 1967, “Characteristics of Fluid Flow in Helical Tubes,” Ph.D. thesis, University of London.
25.
Ward-Smith, A. J., 1980, Internal Fluid Flow, Clarendon Press, Oxford, p. 268.
26.
Back, L. H., Kwack, E. Y., and Crawford, D. W., 1990, “Flow Measurements in a Model of the Mildly Curved Femoral Artery of Man,” in: Blood Flow in Large Arteries: Applications to Atherogenesis and Clinical Medicine, Leipsch, D. W., ed., Monogr. Atheroscler. Basel. Kargar, 15, pp. 96–108.
27.
Kajiya
, F.
, Tsujioka
, K.
, Ogasawara
, Y.
, Wada
, Y.
, Matsuoka
, S.
, Kanazawa
, S.
, Hiramatsu
, O.
, Tadaoka
, S.-I.
, Goto
, M.
, and Fujiwara
, T.
, 1987
, “Analysis of Flow Characteristics in Post-Stenotic Regions of the Human Coronary Artery During Bypass Graft Surgery
,” Circulation
, 76
, pp. 1092
–1100
.28.
Lighthill, M. J., 1975, Mathematical Biofluid Dynamics, Society for Industrial and Applied Mathematics, Philadelphia, p. 206.
Copyright © 2000
by ASME
You do not currently have access to this content.