The effect of blood velocity pulsations on bioheat transfer is studied. A simple model of a straight rigid blood vessel with unsteady periodic flow is considered. A numerical solution that considers the fully coupled Navier–Stokes and energy equations is used for the simulations. The influence of the pulsation rate on the temperature distribution and energy transport is studied for four typical vessel sizes: aorta, large arteries, terminal arterial branches, and arterioles. The results show that: the pulsating axial velocity produces a pulsating temperature distribution; reversal of flow occurs in the aorta and in large vessels, which produces significant time variation in the temperature profile. Change of the pulsation rate yields a change of the energy transport between the vessel wall and fluid for the large vessels. For the thermally important terminal arteries (0.04–1 mm), velocity pulsations have a small influence on temperature distribution and on the energy transport out of the vessels (8 percent for the Womersley number corresponding to a normal heart rate). Given that there is a small difference between the time-averaged unsteady heat fiux due to a pulsating blood velocity and an assumed nonpulsating blood velocity, it is reasonable to assume a nonpulsating blood velocity for the purposes of estimating bioheat transfer.

1.
Field, S. B., and Hand, J. W., 1990, An Introduction to the Practical Aspects of Hyperthermia, Taylor & Francis, New York.
2.
Dewhirst, M. W., and Samulski, T. V., 1988, Hyperthermia in the Treatment for Cancer, Upjohn, Kalamazoo, MI.
3.
Oleson
,
J. R.
,
Sim
,
D. A.
, and
Manning
,
M. R.
,
1984
, “
Analysis of Prognostic Variables in Hyperthermia Treatment of 161 Patients
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
10
, No.
12
, pp.
2231
2239
.
4.
Clegg
,
S. T.
,
Das
,
S. K.
,
Fullar
,
E.
,
Anderson
,
S.
,
Blivin
,
J.
,
Oleson
,
J. R.
, and
Samulski
,
T. V.
,
1996
, “
Hyperthermia Treatment Planning and Temperature Distribution Reconstruction: A Case Study
,”
Int. J. Hyperthermia
,
12
, No. 1,pp.
65
76
.
5.
Clegg
,
S. T.
, and
Roemer
,
R. B.
,
1993
, “
Reconstruction of Experimental Hyperthermia Temperature Distributions: Application of State and Parameter Estimation
,”
ASME J. Biomech. Eng.
,
115
, pp.
380
388
.
6.
Chato, J. C., 1990, “Fundamentals of Bioheat Transfer,” in: Thermal Dosimetry and Treatment Planning, M. Gautherie, ed., Springer-Verlag, pp. 1–56.
7.
Crezee
,
J.
, and
Lagendijk
,
J. J.
,
1992
, “
Temperature Uniformity During Hyperthermia: The Impact of Large Vessels
,”
Phys. Med. Biol.
,
35
, pp.
905
923
.
8.
Rawnsley
,
R. J.
,
Roemer
,
R. B.
, and
Dutton
,
A. W.
,
1994
, “
The Simulation of Discrete Vessel Effects in Experimental Hyperthermia
,”
ASME J. Biomech. Eng.
,
116
, pp.
256
262
.
9.
Craciunescu
,
O. I.
,
Samulski
,
T. V.
,
MacFall
,
J. R.
, and
Clegg
,
S. T.
,
2000
, “
Perturbations in Hyperthermia Temperature Distributions Associated With Counter-Current Flow: Numerical Simulations and Empirical Verification
,”
IEEE Trans. Biomed. Eng.
,
47
, No.
4
, pp.
435
443
.
10.
Weinbaum
,
S.
,
Jiji
,
L. M.
, and
Lemons
,
D. E.
,
1984
, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part I: Anatomical Foundation and Model Conceptualization
,”
ASME J. Biomech. Eng.
,
106
, pp.
321
330
.
11.
Jiji
,
L. M.
,
Weinbaum
,
S.
, and
Lemons
,
D. E.
,
1984
, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part II: Model Formulation and Solution
,”
ASME J. Biomech. Eng.
,
106
, pp.
331
341
.
12.
Chen
,
M. M.
, and
Holmes
,
K. R.
,
1980
, “
Microvascular Contributions in Tissue Heat Transfer
,”
Ann. N.Y. Acad. Sci.
,
335
, pp.
137
150
.
13.
Womersley
,
J. R.
,
1955
, “
Oscillatory Motion of a Viscous Liquid in a Thin Walled Elastic Tube. I: The Linear Approximation for Long Waves
,”
Philos. Mag.
,
46
, pp.
199
221
.
14.
Uchida
,
S.
,
1956
, “
The Pulsating Viscous Flow Superimposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe
,”
Z. Angew. Math. Phys.
,
7
, pp.
403
422
.
15.
Atabek
,
H. B.
, and
Chang
,
C. C.
,
1961
, “
Oscillatory Flow Near the Entry of a Circular Tube
,”
Z. Angew. Math. Phys.
,
12
, pp.
185
201
.
16.
Ling
,
S. C.
, and
Atabek
,
H. B.
,
1972
, “
A Nonlinear Analysis of Pulsatile Flow in Arteries
,”
J. Fluid Mech.
,
55
, No.
3
, pp.
493
511
.
17.
Chang
,
L. J.
, and
Tarbell
,
J. M.
,
1985
, “
Numerical Simulation of Fully Developed Sinusoidal and Pulsatile (Physiological) Flow in Curved Tubes
,”
J. Fluid Mech.
,
161
, pp.
175
198
.
18.
Cen
,
R. J.
,
Liu
,
B. S.
, and
Hwang
,
N. H.
,
1987
, “
Developing Oscillatory Flow in a Circular Pipe: A New Solution
,”
ASME J. Biomech. Eng.
,
109
, pp.
340
345
.
19.
Perktold
,
K.
,
Resch
,
M.
, and
Peter
,
R. O.
,
1991
, “
Three-Dimensional Numerical Analysis of Pulsatile Flow and Wall Shear Stress in the Carotid Artery Bifurcation
,”
J. Biomech.
,
24
, No.
6
, pp.
409
420
.
20.
Perktold
,
K.
,
Nerem
,
R. M.
, and
Peter
,
R. O.
,
1991
, “
A Numerical Calculation of Flow in a Curved Tube Model of the Left Main Coronary Artery
,”
J. Biomech.
,
24
, No.
3/4
, pp.
175
189
.
21.
Johnson
,
G. A.
,
Borowetz
,
H. S.
, and
Anderson
,
J. L.
,
1992
, “
A Model of Pulsatile Flow in an Uniform Deformable Vessel
,”
J. Biomech.
,
25
, No.
1
, pp.
91
100
.
22.
Wang
,
D. M.
, and
Tarbell
,
J. M.
,
1992
, “
Nonlinear Analysis of Flow in an Elastic Tube (Artery): Steady Streaming Effects
,”
J. Fluid Mech.
,
239
, pp.
341
358
.
23.
Wang
,
D. M.
, and
Tarbell
,
J. M.
,
1995
, “
Nonlinear Analysis of Oscillatory Flow, With a Nonzero Mean in an Elastic Tube (Artery)
,”
ASME J. Biomech. Eng.
,
117
, pp.
127
135
.
24.
Ballyk
,
P. D.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
,
1994
, “
Simulation of Non-Newtonian Blood Flow in an End-to-Side Anastomosis
,”
Biorheology
,
31
, No.
5
, pp.
565
586
.
25.
He
,
X.
, and
Ku
,
D.
,
1994
, “
Unsteady Entrance Flow Development in a Straight Tube
,”
ASME J. Biomech. Eng.
,
116
, pp.
355
360
.
26.
Sharp
,
M. K.
,
Thurston
,
G. B.
, and
Moore
, Jr.,
J. E.
,
1996
, “
The Effect of Blood Viscoelasticity on Pulsatile Flow in Stationary and Axially Moving Tubes
,”
Biorheology
,
33
, No.
3
, pp.
185
208
.
27.
Siegel
,
R.
, and
Perlmutter
,
M.
,
1962
, “
Heat Transfer for Pulsating Laminar Duct Flow
,”
ASME J. Heat Transfer
,
84
, pp.
111
123
.
28.
Cho
,
H. W.
, and
Hyun
,
J. M.
,
1990
, “
Numerical Solution of Pulsating Flow and Heat Transfer Characteristics in a Pipe
,”
Int. J. Heat Fluid Flow
,
11
, No.
4
, pp.
321
330
.
29.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Hyun
,
J. M.
,
1993
, “
Heat Transfer in the Thermally Developing Region of a Pulsating Channel Flow
,”
Int. J. Heat Mass Transf.
,
36
, No.
17
, pp.
4257
4266
.
30.
Guo
,
Z.
, and
Sung
,
H. J.
,
1997
, “
Analysis of the Nusselt Number in Pulsating Pipe Flow
,”
Int. J. Heat Mass Transf.
,
40
, No.
10
, pp.
2486
2489
.
31.
Moschandreou
,
T.
, and
Zamir
,
M.
,
1997
, “
Heat Transfer in a Tube With Pulsating Flow and Constant Heat Flux
,”
Int. J. Heat Mass Transf.
,
40
, No.
10
, pp.
2461
2466
.
32.
Xu
,
X. Y.
,
Collins
,
M. W.
, and
Jones
,
C. J. H.
,
1992
, “
Flow Studies in Canine Artery Bifurcations Using a Numerical Simulation Method
,”
ASME J. Biomech. Eng.
,
114
, pp.
504
511
.
33.
Zienkiewicz, O. C., 1971, The Finite Element Method in Engineering Science, McGraw-Hill, London.
34.
Kincaid, D., and Cheney, W., 1991, Numerical Analysis. Mathematics of Scientific Computing, Brooks/Cole Publishing Company, Pacific Grove, CA.
35.
Schneck, D. J., 1995, “An Outline of Cardiovascular Structure and Function,” in: The Biomedical Engineering Handbook, J. D. Bronzino, ed., CRC Press, IEEE Press.
36.
Dewhirst
,
M. W.
,
Kimura
,
H.
,
Rehmus
,
S. W.
,
Braun
,
R. D.
,
Papahadjopoulos
,
D.
,
Hong
,
K.
, and
Secomb
,
T. W.
,
1996
, “
Microvascular Studies on the Origins of Perfusion-Limited Hypoxia
,”
Br. J. Cancer Suppl.
,
27
, pp.
247
251
.
37.
McDonald, D. A., 1974, Blood Flow in Arteries, Williams & Wilkins, Baltimore, MD.
38.
Mall
,
F.
,
1888
, “
Die Blut- und Lymphwege in Dunndarm des hundes,” Abhadlungen der Kouigl gesellshaft der Wissenschaften
Matematish-Physischem Classe
,
14
, pp.
151
200
.
You do not currently have access to this content.